首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以介孔碳(MC)为导电和支撑介质, 在多元醇体系中通过简便的化学还原方法制备纳米结构的介孔碳-锡(MC-Sn)复合材料. 采用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)和恒电流充放电实验对所得产物的形貌、结构及电化学性能进行表征. 结果表明, 大量的Sn纳米颗粒均匀且致密地附着在介孔碳上. 作为锂离子电池负极材料, MC-Sn复合物表现出了较好的循环性能和倍率性能. 例如, 在100 mA•g-1的充放电速率下循环40圈, 其放电比容量保持在721.5 mAh•g-1; 当充放电速率增大到1 A•g-1时, 其放电比容量仍高达265.8 mAh•g-1. 简单的制备方法和优越的储锂性能,使得MC-Sn复合材料成为一种理想的高性能锂离子电池负极材料.  相似文献   

2.
吕之阳  冯瑞  赵进  范豪  徐丹  吴强  杨立军  陈强  王喜章  胡征 《化学学报》2015,73(10):1013-1017
锂离子电池具有能量密度高和循环性好等优点, 广泛应用于小型移动设备等领域, 但尚不能满足需要兼具高容量和高倍率性能的应用要求. 以兼具高比表面积、氮含量高且可调、良好石墨化程度、多尺度分级结构(含孔结构)、有微孔通道的寡层笼壁结构等特征的氮掺杂碳纳米笼(NCNC)为锂离子电池负极材料, 展现出高的比容量、优异的倍率性能和稳定性, 譬如: 在0.1 A·g-1小电流密度下, NCNC800的循环稳定的充电比容量可以高达约900 mAh·g-1, 显著优于商业石墨; 在20.0 A·g-1大电流密度下, 循环500圈后的可逆比容量仍能稳定在约135 mAh·g-1. 如此优异的电化学性能可归因于NCNC的结构特征, 如高比表面积、良好石墨化程度、独特介观结构和孔结构, 这些特征有利于锂离子传输、电解液渗透和电子传导等. 这为开发高倍率和高比容量的锂离子电池负极材料提供思路.  相似文献   

3.
锂离子电池Sn负极材料有较高的比容量,但其容量随周期循环急剧衰减. 若Sn与Sb形成SnSb合金可以改善其循环性能. 本文采用有机液相还原方法制备了球形Sn-SnSb合金纳米粒子,其首周期循环充电容量1235.9 mAh·g-1,放电容量为785.9 mAh·g-1,经过50周的循环之后其放电容量保持在409.2 mAh·g-1,表现出较好的循环性能.  相似文献   

4.
由于具有高安全性和优异的循环稳定性,二氧化钛(TiO2)作为负极材料被广泛地应用于锂离子电池领域。但是较差的导电性和离子传输速率限制了TiO2的进一步应用和发展。鉴于此,我们以花状NH2-MIL-125 (Ti)为前驱体和硬模板,成功合成出了具有花状结构的超细纳米TiO2/多孔氮掺杂碳片(N-doped porous carbon)复合物(记为FL-TiO2/NPC)。过程中所制备的纳米TiO2-金属有机构架(Ti-MOF)展现出由二维褶皱多孔纳米片堆积、组装而成的花状结构。一方面,二维褶皱纳米片包含TiO2纳米颗粒可以增大活性物质与电解液的接触面积;另一方面,氮掺杂多孔碳基体可以提高整体复合物的导电性和结构完整性。将所获得的FL-TiO2/NPC作为负极组装成的锂半电池, 在0.5 A·g-1、300圈后仍有384.2 mAh·g-1以及在1 A·g-1、500圈仍有279.1 mAh·g-1的比容量。进一步性能测试表明,在2 A·g-1、2000圈长循环测试后,其仍能保持256.5 mAh·g-1的比容量和接近100%的库伦效率。该优异的电化学活性和稳定性主要起源于材料独特的花状结构。我们的合成策略为今后制备高储锂性能的金属氧化物/多孔氮掺杂碳负极提供了一种新的思路。  相似文献   

5.
采用静电纺丝技术制备出CaSnO3纳米纤维(CaSnO3 NFs)并作为模板,再经表面原位聚合酚醛树脂和碳化处理制得碳包覆CaSnO3纳米纤维(CaSnO3@C NFs)。使用X射线衍射、扫描电子显微镜、透射电子显微镜和X射线光电子能谱对材料的物相组成、形貌和微观结构进行了表征,通过循环伏安、恒电流充放电和交流阻抗谱研究了碳包覆及碳化温度对CaSnO3 NFs负极材料电化学性能的影响。结果显示,碳包覆改性使CaSnO3 NFs的电化学性能得到较大程度的提高,而且随着碳化温度的升高,CaSnO3@C NFs复合电极的比容量先增加后下降,600℃碳化获得的CaSnO3@C NFs?600复合材料具有最好的电化学性能。在0.1 A·g-1的电流密度下,CaSnO3@C NFs?600电极的首圈放电比容量达到1102.2 mAh·g-1,充放电循环100圈后比容量为548.8 mAh·g-1,当电流密度提高到2 A·g-1时,其比容量仍保持在333.5 mAh·g-1。  相似文献   

6.
锂离子电池硅基负极粘结剂发展现状   总被引:2,自引:0,他引:2  
在锂离子电池负极材料的研究中,硅材料以其高达4200 mAh·g-1的理论比容量,成为近年来新能源电池领域的研究热点.但是在锂化/去锂化过程中,硅负极体积变化高达300%,导致快速的容量衰减和较短的循环寿命.目前硅负极改性最有效的方法之一,是通过粘结剂来保持活性物质、导电添加剂和集流体间的接触完整性,减少硅材料在充放电循环过程中体积变化引起的裂化和粉碎,保持硅负极的高容量,提升电池循环性能.基于硅材料作为锂离子电池负极的优异特性,以及目前锂离子电池粘结剂的发展,将针对锂离子电池硅基负极粘结剂做出系统讨论,描述不同粘结剂对电池性能的主要影响,为锂离子电池硅基负极粘结剂的开发和应用提供研究方向.  相似文献   

7.
本文设计制备了一种新型的氮掺杂碳包覆镍钴双金属磷化物中空核壳结构纳米立方体(Ni1.2Co0.8P@N-C)作为钠离子电池负极材料. 该材料以镍钴类普鲁士蓝(PBA)纳米粒子为模板,先后经水热法、磷化法和高温碳化处理后合成. 将其作为活性材料应用在钠离子电池中,该材料展现出优异的循环稳定性,当以100 mA·g-1的电流密度循环至200圈时,该材料的库仑效率保持在99.3%. 进一步通过对不同电位下Ni1.2Co0.8P@N-C材料中的氮掺杂碳进行原位拉曼光谱测试,结果显示钠离子在氮掺杂的碳壳中的脱嵌行为具有较大程度的可逆性,研究结果对钠离子电池充放电过程的后续电化学研究提供了有价值的信息.  相似文献   

8.
杜进  林宁  钱逸泰 《化学学报》2017,75(2):147-153
目前,锂离子电池被广泛地应用于移动电子设备、电动汽车以及混合动力汽车,因此,对高比容量以及长循环寿命的需求也愈加迫切.石墨类负极材料具有优异的循环性能,但理论比容量较低(372 mA·h·g-1),难以满足日益增长的高能量密度需求.Si负极材料因具有较高的可逆比容量(3579 mA·h·g-1)而引起广泛关注.但是,巨大的体积膨胀限制了Si负极的使用.纳米化可以有效的释放Si体积膨胀带来的应力变化,提高其电化学性能.然而,单独的纳米材料具有很高的比表面会引起诸多副反应,阻碍其实际应用.将纳米Si与石墨复合制备Si/石墨复合材料,可充分利用纳米Si和石墨的优点,有望成为新一代高能量密度和长循环寿命锂离子电池负极材料.截至目前,多种技术手段被应用于制备纳米Si/石墨的复合材料,其核心问题是保证纳米Si和石墨的均匀分散以及稳定的结合.根据石墨与纳米Si的复合过程可以将该类材料的制备方法分为:固相法、液相法、以及气相沉积法.本综述对现有文献报道的Si/石墨复合材料制备方法以及所面临的主要问题进行简要总结概括.  相似文献   

9.
以氧化镁/三聚氰胺/聚乙二醇混合物为初始原料,通过模板辅助的方法成功地制备了高储锂性能的氮掺杂多孔炭片(NPCSs).采用红外光谱(FTIR)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、循环伏安(CV)、恒流充放电(GCD)和交流阻抗(EIS)对样品进行了详细地表征和分析.结果显示:NPCSs为交错连接的多孔炭片网络,并显示出较高的比表面积(370.8 m2·g-1)、多级的孔道和高的氮含量(8.5 at%).这种连续多孔的结构,有利于电子在三维方向的传输,缩短了锂离子扩散的距离,扩大了锂离子与电极的接触面积,也为锂离子的储存提供了有利场所.此外,高的氮掺杂水平为锂离子的嵌入和脱出提供了大量的活性位点,增强了材料的导电性.基于此独特的结构,NPCSs电极显示了高的首次可逆比容量(电流密度为100 mA·g-1时,扣除乙炔黑贡献后的比容量为914 mAh·g-1)和较好的循环稳定性(电流密度为1000 mA·g-1,循环至300圈,仍保留523 mAh·g-1的比容量).而且,该材料显示出较高的倍率性能,在电流密度为3000 mA·g-1时的可逆比容量达到355 mAh·g-1.因此,所获得的NPCSs有望成为锂离子电池负极材料.  相似文献   

10.
本文以氯化钠为硬模板、硝酸镍为金属源、葡萄糖为碳源,在氮气气氛中于750 oC通过一步热解法合成嵌镍碳纳米片,然后经酸处理得到多孔碳纳米片. 通过扫描电镜(SEM)、透射电镜(TEM)、拉曼光谱(Raman)和比表面积测定(BET)表征多孔碳纳米片的形貌和结构. 结果显示:多孔碳纳米片孔分布均匀,孔径大小均一;经过酸处理后,碳材料的石墨化程度降低;具有较大的比表面积(约340 m2•g-1). 电化学测试表明,电极在100mA•g-1电流密度下,经过200周循环放电后比容量可维持在309.4 mAh•g-1,甚至在1000 mA•g-1 的大电流下其放电比容量仍然可达到173mAh•g-1,表现出良好的循环稳定性和倍率性能,其在钠离子电池负极材料方面具有潜在的应用前景.  相似文献   

11.
孙明明  张世超 《物理化学学报》2007,23(12):1937-1942
采用多步电沉积法制备的三维多孔铜箔作为集流体、低温液相化学还原法制备的纳米Sn/SnSb 合金作为负极材料, 制备出一种新型三维多孔结构的纳米Sn/SnSb合金复合负极. 通过与普通负极电化学性能的对比实验发现, 这种新型三维复合负极具有如下优点: 三维多孔网络结构提高了负极活性材料与集流体之间的结合力, 使不含粘结剂电极的制备成为可能; 有效缓解了高容量负极活性材料在充放电过程中的体积膨胀, 提高了负极活性材料的循环性能, 当循环到第30周时, 普通负极剩余容量为初始容量的33%, 而三维复合负极剩余容量为初始容量的41%; 三维铜箔集流体的特殊结构为高容量负极活性材料提供了一个良好的导电环境, 使电极反应进行得更加完全, 从而获得了更高的电极比容量, 普通负极初始容量为480 mAh·g-1, 而三维复合负极达到了800 mAh·g-1. 纳米Sn/SnSb合金三维复合负极良好的电化学性能为锂离子电池负极结构的设计开发提供了新的思路.  相似文献   

12.
牛津  张苏  牛越  宋怀河  陈晓红  周继升 《化学进展》2015,27(9):1275-1290
硅是目前已知比容量(4200 mAh ·g-1)最高的锂离子电池负极材料,但由于其巨大的体积效应(> 300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层(SEI),最终导致电化学性能的恶化。本文介绍了硅作为锂离子电池负极材料的储能及容量衰减机理,总结了通过硅材料的选择和结构设计来解决充放电过程中巨大体积效应的相关工作,并讨论了一些具有代表性的硅基复合材料的制备方法、电化学性能和相应机理,重点介绍了硅炭复合材料。另外,介绍了一些电极的处理方法和其提高硅基负极材料电化学性能的可能机理。最后,对硅基负极材料存在的问题进行了分析,并展望了其研究前景。  相似文献   

13.
采用酸浸蚀Al-Si合金的方法制备了多孔纳米Si,并用其制作以石墨烯为导电材料的石墨烯/多孔纳米Si负极. SEM和TEM的分析表明两者混合均匀. 作为锂离子电池的负极,该电极在1 mol•L-1 LiPF6/EC(碳酸乙烯酯):DMC(碳酸二甲酯) = 1:1(by volume) + 1.5%(by mass)VC(碳酸亚乙烯酯)溶液中、0.5 A•g-1电流密度下,第120周循环的放电比容量为1842.6 mAh•g-1,充放电效率为98.6%. 石墨烯的加入不仅提高了电极的导电性,而且减缓了充放电过程中电极多孔纳米结构的衰变.  相似文献   

14.
刘贵昌  申晓晓  王立达 《电化学》2013,19(2):169-173
应用水热法分解葡萄糖制作锂离子电池碳包覆锡负极. 充放电测试表明,添加5%(by mass)乙炔黑导电剂的该电极初始放电比容量达967 mAh.g-1,经50周循环其放电比容量仍保持362 mAh.g-1,远高于锡电极的比容量(50周循环166 mAh.g-1). 碳包覆可防止锡粉团聚,降低锡的不可逆容量损失. 而添加乙炔黑可降低碳包覆电极与电解液间的交流阻抗,改善电极内部锂离子及电子的传导通道,从而也提高了该电极的初始放电比容量.  相似文献   

15.
钠离子电池锡负极因具有较高的理论容量(847 mA·h/g)、 高电导率和合适的工作电位而备受关注. 但锡基负极材料在循环过程中会发生巨大的结构变化, 进而导致活性材料粉化失活和比容量的快速下降. 本文成功制备了基于石墨氮化碳(g-C3N4)、 聚多巴胺衍生的氮掺杂碳(NC)和Sn纳米颗粒的复合物(g-C3N4/Sn/NC), 其中Sn纳米颗粒包埋在石墨氮化碳和氮掺杂碳中. 在此多层分级结构中, g-C3N4和NC的引入可以显著加速电子/离子的传输及电池反应动力学, 从而有助于Sn和钠离子之间的合金化反应; 此外, 这种复合结构有助于保持电极材料的结构稳定性, 进而可以获得优异的储钠性能. 作为钠离子电池负极材料, g-C3N4/Sn/NC在0.5 A/g电流密度下经历100次循环, 可逆容量可以达到450.7 mA·h/g; 在1.0 A/g电流密度下, 比容量为388.3 mA·h/g; 此外, 在1.0 A/g电流密度下, 经过400次循环后其比容量依旧能达到363.3 mA·h/g.  相似文献   

16.
贺倩  张崇  李晓  王雪  牟攀  蒋加兴 《化学学报》2018,76(3):202-208
共轭微孔聚合物由于其高的比表面积、优良的物理化学稳定性以及沿分子链延伸的共轭结构等特点,使其在锂离子电池电极材料方面具有巨大的应用前景.本工作以四溴芘和对苯二硼酸为构建单元,通过Suzuki偶联反应合成了具有高比表面积的芘基共轭微孔聚合物PyDB,并研究了其作为锂离子电池电极材料的电化学性能.当PyDB用作锂离子电池正极材料时,在50 mA·g-1的电流密度下,放电容量达到163 mAh·g-1,即使在3000 mA·g-1的电流密度下仍具有62 mAh·g-1的可逆容量,在100 mA·g-1的电流密度下循环300次仍具有167 mAh·g-1的容量.当该聚合物用作负极材料时,在50 mA·g-1电流密度下的放电容量达到495 mAh·g-1,在200 mA·g-1的电流密度下循环300次,仍具有245 mAh·g-1的容量.PyDB优异的电化学性能主要归因于其延伸的共轭结构和高比表面积的多孔结构,大的共轭结构有利于分子链的掺杂反应和电子传导,高比表面积的多孔结构有利于提供大量的活性位点并促进离子的迁移.  相似文献   

17.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

18.
以生物质百香果皮为碳源,KHCO3为活化剂,采用同步活化碳化方法制备原位氮掺杂的分级多孔碳材料,将其与单质硫复合制得多孔碳/硫正极材料。通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征技术对制备材料的物相组成、微观形貌、比表面积及孔结构进行研究分析。同时,利用紫外可见吸收光谱研究了多孔碳对多硫化物的吸附作用,用恒电流充放电测试了不同硫含量(60%~80%)的多孔碳/硫复合正极材料的电化学性能。结果表明,制得的多孔碳材料为无定型,具有1 093 m2·g-1的高比表面积和0.63 cm3·g-1的孔容;丰富的多孔结构和原位氮掺杂对多硫化物的物理化学协同吸附作用,有效降低了锂硫电池的“穿梭效应”,提高了电池的放电比容量和循环性能。硫含量为60%的多孔碳/硫复合材料,在0.05C和0.2C倍率下可释放1 057.7和763.4 mAh·g-1的高初始放电比容量,在1C的高倍率下循环300次后的保持率为75%。  相似文献   

19.
近年来,由于锂资源逐渐紧缺而导致其成本增加,锂离子电池发展受到了限制. 作为一个有潜力的替代者,有着相似电化学机制且成本较低的钠离子电池则发展迅速. 但由于钠离子与锂离子相较有着更大半径,在钠离子脱嵌过程中,对大多数电极材料的晶体结构破坏严重. 因此,开发新型电极材料对钠离子电池的进一步发展尤为重要. 其中,层状钒氧化物作为正极材料被广泛研究. 在这项工作中,作者基于钒氧化物,引入钼元素并与碳复合,首次设计合成了一种新型的碳复合钼掺杂的钒氧化物纳米线电极材料,并获得了优良的电化学性能(在50 mA•g-1的电流密度下,最高放电比容量达135.9 mAh•g-1,并在循环75次后仍有82.6mAh•g-1的可逆容量,容量保持率高达71.8%;在1000mA•g-1的高电流密度下循环并回到50mA•g-1后,可逆放电比容量仍能回复至111.5mAh•g-1). 本工作的研究结果证明,这种具有超大层间距的新型碳复合钼掺杂的钒氧化物纳米线是一种非常有潜力的储钠材料,并且我们的工作为钠离子电池的进一步发展提供了一定的理论基础.  相似文献   

20.
通过溶液水解反应在氧化石墨烯表面引入氧化锡(Sn O2)纳米颗粒,再经过自组装作用形成具有三维结构的氧化锡/石墨烯水凝胶(Sn O2-GH)负极材料。其中三维多孔的石墨烯水凝胶为碳质缓冲基体,Sn O2纳米颗粒为活性物质,其颗粒尺寸为2-3 nm,均匀分布在石墨烯层上,担载量可以达到54%(w,质量分数)。直接将该材料用作锂离子电池负极时,在5000 m A?g~(-1)的大电流密度下循环60次容量稳定在500 m Ah?g~(-1),电流减小到50 m A?g~(-1)循环80次后容量仍高达865 m Ah?g~(-1)。这些优异的循环稳定性和大电流充放电性能主要得益于三维石墨烯水凝胶的疏松、多孔结构和良好的导电性。石墨烯水凝胶能够提高电极比表面积,保证电解液对电极的浸润程度;内部空隙能够为锂离子的传输提供快速通道,缩短离子传输距离和时间。同时丰富的内部空间能够有效避免Sn O2纳米颗粒团聚,缓冲Sn O2巨大体积膨胀,维持电极结构的稳定性,是一种非常适于大电流充放电的锂离子电池负极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号