首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Enantioselective preference in the asymmetric synthesis where cyclohexene oxide is transformed enantioselectively to chiral (S)- or (R)-2-cyclohexen-1-ol by the reaction with the appropriate chiral lithium amide reagent has been evaluated theoretically using the MM3 force field. The plausible possible structures for each precursor (reaction intermediate complex) leading to a (S)- or (R)-2-cyclohexen-1-ol have been optimized with the extended MM3 force field applicable to the lithium amide functional group, and the populations of their (S)- or (R)-reaction intermediate complexes at an ambient temperature (298 K) were calculated. The initial structure for evaluating the reaction intermediates of this asymmetric synthesis was constructed on the basis of the optimized ab initio transition state structure (MP2/6-31+G) comprising lithium amide LiNH2 and propene oxide. To the thus obtained transition state structure composed of LiNH2 and propene oxide, the other remaining Cartesian coordinates for the actual reaction intermediates composed of the chiral lithium amides and cyclohexene oxide were added to make the reaction intermediate structure. The conformational search for the reaction intermediate has been carried out by using the Stochastic search Algorithm, and the optimized geometries and their conformational energies (steric energies) have been calculated by the MM3 force field. The populations calculated from the conformational energies of the reaction intermediate leading to the (S)- or (R)-2-cyclohexen-1-ol were shown to be linearly well correlated with the experimentally reported enantiomer excess (% ee) values. The critical factors to control the enantioselectivity were investigated on the basis of the optimized structures of the reaction intermediate complexes. The MM3 force field approach was shown to be applicable to the theoretical evaluation of the enantioselectivity and be useful for designing a new functional chiral lithium amide reagent for the asymmetric synthesis.  相似文献   

2.
Time-resolved charge recombination has been measured by reflectance/absorption spectroscopic analysis of Langmuir-Blodgett films of reaction centers of the photosynthetic bacterium, Rhodopseudomonas sphaeroides over a wide range of applied electric field strengths. The field dependence of the recombination kinetics has been deduced from the time-course of the reduction of the flash-oxidized bacteriochlorophyll dimer [(BChl)+2] recorded at different applied field strengths. Measurements were performed under two different electric field biasing conditions: a constant bias and a high-frequency bipolar square-wave bias. The additional data obtained from bipolar biasing enabled the use of a new deconvolution method to obtain the field dependence of the rate constants from the experimental curves. The deconvolution shows that the rates for charge recombination from the flash-generated state back to the ground state (BChl)2QA approximate exponential functions of the applied electric field. Correlation of the recombination kinetics data with photoinduced electrical response measurements on films with asymmetric up and down populations of reaction centers reveals that fields opposing charge separation result in faster rates of recombination. Although other possibilities are considered, the main source of the effect is believed to be a result of field-induced changes in the free energy gap between and (BChl)2QA. The results presented here are compared to those obtained in experiments with solubilized reaction centers in which the free energy gap between and (BChl)2QA has been changed by quinone replacement.  相似文献   

3.
A recently developed perturbation theory for solving self-consistent field equations is applied to the hydrogen atom in a strong magnetic field. This system has been extensively studied using other methods and is therefore a good test case for the new method. The perturbation theory yields summable large-order expansions. The accuracy of the self-consistent field approximation varies according to field strength and quantum state but is often higher than the accuracy from adiabatic approximations. A new derivation is presented for the asymptotic adiabatic approximation, the most useful of the adiabatic approaches. This derivation uses semiclassical perturbation theory without invoking an adiabatic hypothesis. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 69: 183–192, 1998  相似文献   

4.
有机磁合成化学研究进展   总被引:11,自引:0,他引:11  
陆模文  胡文祥 《有机化学》1997,17(4):289-294
通过磁场对聚合反应、酯化反应、光还原反应和不对称合成等的影响,论述了有机磁化学的理论研究和应用进展。磁场在一定程度上影响有机反应的反应速率、产率、反应途径和产物构成。同时初步探讨了磁场影响化学反应速率的机理,并展望了磁化学的发展前景。  相似文献   

5.
We investigate the effects of laser field intensity over the ground state binding energy of light and heavy hole excitons confined in GaAs/Ga1?xAlx As cylindrical quantum wire. We have applied the variational method using 1s‐hydrogenic wave functions, in the framework of the single band effective mass approximation with the spatial dielectric function. The polaronic effects are included in the calculation to compute the exciton binding energy as a function of the wire radius for different field of laser intensity. The valence‐band anisotropy is included in our theoretical model by using different hole masses in different spatial directions. The dressed laser donor binding energies are calculated and compared with the results of binding energy of excitons. The results show that (i) the binding energy is found to increase with decrease with the wire radius, and decrease with increase with the value of laser field amplitude, (ii) the heavy‐hole exciton in a cylindrical quantum wire is more strongly bound than the light‐hole exciton, (iii) the values of ground state binding energy for the laser field amplitude α0 = 10 Å resemble with the values of heavy hole exciton binding energy, and (iv) the binding energy of the impurity for the narrow well wire is more sensitive to the laser field amplitude. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

6.
A method to enable smectic A (SmA) liquid crystal (LC) devices to switch uniformly and hence fast from the clear state to a scattered state is presented. It will allow the reduction of the switching time for a SmA LC panel of 1 × 1 m2 changing from a clear state to a fully scattered state by more than three orders to a few tens of milliseconds. Experimental results presented here reveal that SmA LC scattering initiates from the nucleated LC defects at the field gradient of the applied electric field usually along the edges of the panel electrode and grows laterally to spread over a panel, which takes a long time if the panel size is large. By patterning the electrodes in use, it is possible to create a large number of field gradient sites near the electrode discontinuities, resulting in a uniform and fast switching over the whole panel and the higher the pattern density the shorter the panel switching time. For the SmA LC panels used here, the ITO transparent electrodes are patterned by laser ablation and photolithography. It is shown that the defect nucleation time is much shorter than the growth time of the scattered region, hence it is possible to use the density of the field gradient sites to control the uniformity and switching time of a panel. Furthermore, the patterned SmA panels have a lower switching voltage than that of the non-patterned ones in general.  相似文献   

7.
On the basis of continuous medium theory, a model for evaluation of spectral shifts in solution has been developed in this work. The interaction energy between solute dipole and reaction field and the self-energy of the reaction field have been formulated through derivations. Applying the interaction energy expression together with the point dipole approximation to the case of spherical cavity produces new formulations of spectral shifts. The same expression of electrostatic free energy of the nonequilibrium state is achieved by integrating the change of the electrostatic free energy for a charging process. Moreover, generalized formulations evaluating spectral shifts have been established in the charge-potential notation, and the reduction of them to the point dipole case consistently leads to the same formulations of spectral shifts as those by interaction energy approach. Mutual supports provide convincing evidences for the reliability of the present results. In this work, attentions are particularly paid to the conclusion of zero self-energy of the reaction field, which is different from the previous theory. Reasoning and arguments are given on this point. From the present derivations, it is concluded that the spectral shifts of light absorption and emission were theoretically exaggerated in the past, in particular, by a factor of 2 for the spectral shift sum.  相似文献   

8.
The quantum dynamics of a photoassociation reaction in the electronic ground state controlled by an infrared picosecond laser pulse is investigated. The association reaction O + H → OH(ν) is simulated by representative wavepackets. The OH molecule to be formed is modeled as a non-rotating Morse oscillator. It is shown that the initial free continuum state of O + H can be transferred selectively into a specified vibrational bound state by interaction with an infrared laser pulse. Optimal design of the laser control field leads to high association probability with very high vibrational state selectivity.  相似文献   

9.
A new derivation of the GLYCAM06 force field, which removes its previous specificity for carbohydrates, and its dependency on the AMBER force field and parameters, is presented. All pertinent force field terms have been explicitly specified and so no default or generic parameters are employed. The new GLYCAM is no longer limited to any particular class of biomolecules, but is extendible to all molecular classes in the spirit of a small-molecule force field. The torsion terms in the present work were all derived from quantum mechanical data from a collection of minimal molecular fragments and related small molecules. For carbohydrates, there is now a single parameter set applicable to both alpha- and beta-anomers and to all monosaccharide ring sizes and conformations. We demonstrate that deriving dihedral parameters by fitting to QM data for internal rotational energy curves for representative small molecules generally leads to correct rotamer populations in molecular dynamics simulations, and that this approach removes the need for phase corrections in the dihedral terms. However, we note that there are cases where this approach is inadequate. Reported here are the basic components of the new force field as well as an illustration of its extension to carbohydrates. In addition to reproducing the gas-phase properties of an array of small test molecules, condensed-phase simulations employing GLYCAM06 are shown to reproduce rotamer populations for key small molecules and representative biopolymer building blocks in explicit water, as well as crystalline lattice properties, such as unit cell dimensions, and vibrational frequencies.  相似文献   

10.
This article presents a new ab initio force field for the cofactors of bacterial photosynthesis, namely quinones and bacteriochlorophylls. The parameters has been designed to be suitable for molecular dynamics simulations of photosynthetic proteins by being compatible with the AMBER force field. To our knowledge, this is the first force field for photosynthetic cofactors based on a reliable set of ab initio density functional reference data for methyl bacteriochlorophyll a, methyl bacteriopheophytin a, and of a derivative of ubiquinone. Indeed, the new molecular mechanics force field is able to reproduce very well not only the experimental and ab initio structural properties and the vibrational spectra of the molecules, but also the eigenvectors of the molecular normal modes. For this reason it might also be helpful to understand vibrational spectroscopy results obtained on reaction center proteins.  相似文献   

11.
In this paper the asymptotic boundary condition (ABC) of 1-D model atom in the intense laser field at the spatial sufficiently far distance is presented using Fourier transformation on the condition that the initial state is local and the atomic potential in the model falls off rapidly. On the basis of this ABC, the symplectic algorithm is developed for computing the model atom in the intense laser field. The ABC and symplectic algorithm are applied to compute the ionization behaviors for 1-D Pöschl–Teller short-range potential. The numerical results illustrate that the ABC and the symplectic algorithm presented are reasonable and effective for 1-D model atom in the intense laser field.  相似文献   

12.
The present work emphasises the investigation of photoinduced electron transfer reaction between an electron-donor fluorophore, N-vinyl carbazole (VCZ), grafted on a polymeric cellulose acetate film and an electron-acceptor, 1,4-dicyanobenzene, in the presence of an external magnetic field that serves as a powerful tool to identify the spin states where the initial electron transfer occurs and to modulate the course of the reaction as desire. Here initial electron transfer occurs in the singlet spin state, and the formation of exciplex increases in the presence of magnetic field. The maximum field effect is obtained in the solvent with medium dielectric constant (εmax) around 8.0. The εmax value indicates that the extent of charge transfer in this exciplex is less compared to other similar systems studied so far, owing to the characteristic binding of VCZ to the polymeric backbone through oxygen atom. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3910–3915, 1999  相似文献   

13.
Ab initio classical molecular dynamics calculations have been used to simulate the dissociation of H(2)NCH(2+) in a strong laser field. The frequencies of the continuous oscillating electric field were chosen to be ω = 0.02, 0.06, and 0.18 au (2280, 760, and 253 nm, respectively). The field had a maximum strength of 0.03 au (3.2 × 10(13) W cm(-2)) and was aligned with the CN bond. Trajectories were started with 100 kcal/mol of vibrational energy above zero point and were integrated for up to 600 fs at the B3LYP/6-311G(d,p) level of theory. A total of 200 trajectories were calculated for each of the three different frequencies and without a field. Two dissociation channels are observed: HNCH(+) + H(+) and H(2)NC(+) + H(+). About one-half to two-thirds of the H(+) dissociations occurred directly, while the remaining indirect dissociations occurred at a slower rate with extensive migration of H(+) between C and N. The laser field increased the initial dissociation rate by a factor of ca. 1.4 and decreased the half-life by a factor of ca. 0.75. The effects were similar at each of the three frequencies. The HNCH(+) to H(2)NC(+) branching ratio decreased from 10.6:1 in the absence of the field to an average of 8.4:1 in the laser field. The changes in the rates and branching ratios can be attributed to the laser field lowering the reaction barriers as a result of a difference in polarizability of the reactant and transition states.  相似文献   

14.
The effect of a high magnetic field of 7 T in the reaction of methyl methacrylate polymerization is emphasized. The intervening magnetokinetic modifications are correlated with the system of radical initiation with benzoyl peroxide, 2,2′‐azobis(2‐methylpropionitrile), 4,4′‐azobis(4‐cyanopentanoic acid), and 1,1′‐azobis(cyclohexane‐1‐carbonitrile). The characterization of the synthesized polymers is correlated with the reaction conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5678–5686, 2004  相似文献   

15.
The effect of a weak magnetic field on the aggregation state and electrophoretic mobility of hematite sol was studied in flowing (dynamic) systems as a function of time and electrolyte concentration (0–60 mmol/dm3 KCl) and compared with the effect of the field in stationary (static) systems and flow in the absence of the field. During the entire treatment period, the pH remained almost constant (4.06–4.24). Conductance varied with KCl concentration, but except for minor fluctuations appeared to be unaffected by any form of treatment. While aggregation of hematite was observed during dynamic magnetic treatment (change in turbidity, scattered light intensity, and photon correlation spectroscopy), little effect on aggregation state was observed for the static systems or for the flowing systems in the absence of the field. Mobility also increased during the first 30 min of static and dynamic magnetic treatment. After longer treatment periods (90–120 min), the mobility decreased, but in almost all cases remained larger than in the case of untreated systems. Changes in both mobility and particle aggregation state also showed a significant dependence on electrolyte concentration. These effects are discussed in terms of a magnetohydrodynamic interaction between the magnetic field and the charged colloidal particles, which results only when the particles are made to pass rapidly through the field.  相似文献   

16.
磁场对蔗糖转化影响的研究   总被引:1,自引:0,他引:1  
一.引言化学反应的发生是各种能量的综合体现,福井谦一曾指出:“由于离域化能而产生的稳定化究竟能抵消由于交换能而产生的不稳定化到何种程度,就是实际能否发生反应的关键。”[1]“一个化学反应在开始阶段有最强离域相互作用的路径,即为经过过渡态而达产物具有最...  相似文献   

17.
Field desorption mass spectrometry under ambient conditions is used to study solution‐phase organic reactions in micro‐volumes. Reagent solution is transferred onto the microdendrites of the field emitter, and reaction products are examined online by mass spectrometry. Three reactions, hydrazone formation by phenyl hydrazine and indoline‐2,3‐dione, the Katritzky reaction between a pyrylium salt and anisidine, and the Hantzsch synthesis of 1,4‐dihydropyridine, were investigated, and reaction acceleration was observed to different extents. The increase in rate relative to the corresponding bulk reactions is attributed to solvent evaporation (simple concentration effect) and to the increase of surface‐to‐volume ratio (enhanced interfacial reactions). A distinguishing feature of this method of reaction acceleration, relative to that based on nano electrospray ionization, is the observation of radical cations and the formation of radical cation products. The study also breaks new ground in using field emitters at atmospheric pressure.  相似文献   

18.
Dynamics of molecules in an intense laser field is studied in terms of the quantum electronic wave packet coupled with classical nuclear motions. The equations of motion are derived taking a proper account of molecular interactions with the vector potential of a classical electromagnetic field, along with the nonadiabatic interaction due to the breakdown of the Born-Oppenheimer approximation. With the aid of electronic structure calculations, the present method enables us to track, in an ab initio manner, the dynamics of polyatomic molecules in an intense field. Preliminary calculations are carried out for the vibrational state of LiF and a collision of Li+F under an intense laser pulse, which are limited to the domain of no ionization.  相似文献   

19.
The submicrometer structure of the temperature-sensitive hydrogels was observed by field emission scanning electron microscopy (FESEM), using synthesized hydrogels of different outer size and shape. The hydrogel structure strongly depends on the homogeneity of the polymer chains during the crosslinking process. A porous structure of the poly(vinyl-methyl-ether) (PVME) bulkgel, synthesized by electron beam irradiation of a concentrated polymer solution, was observed in the swollen state because the phase transitions temperature is acquired through the crosslinking process. Photo-crosslinking reaction of the poly(N-isopropylacrylamide) (PNIPAAm) copolymer in the dry state to form PNIPAAm thin films leads to a rather homogeneous structure. In the shrunk state both gels possess structure being more compact than in the swollen state. We also synthesized PVME and PNIPAAm gels with small outer dimensions in the range of some 100 nm. Heating of the thermo-sensitive polymer in diluted solutions collapses the polymer chains or aggregates. The crosslinking reaction (initiated by electron beam or UV irradiation) of these phase separated structures produces thermo-sensitive microgels. These microgel particles of PVME and PNIPAAm are spherical shape having diameters in the range of 30 - 500 nm.  相似文献   

20.
Time-dependent Hartree-Fock theory has been used to study of the electronic optical response of a series of linear polyenes in strong laser fields. Ethylene, butadiene, and hexatriene have been calculated with 6-31G(d,p) in the presence of a field corresponding to 8.75 x 10(13) W/cm2 and 760 nm. Time evolution of the electron population indicates not only the pi electrons, but also lower lying valence electrons are involved in electronic response. When the field is aligned with the long axis of the molecule, L?wdin population analysis shows large charges at each end of the molecule. For ethylene, the instantaneous dipole moment followed the field adiabatically, but for hexatriene, nonadiabatic effects were very pronounced. For constant intensity, the nonadiabatic effects in the charge distribution, instantaneous dipole, and orbital populations increased nonlinearly with the length of the polyene. These calculations elucidate the mechanism of the strong field nonadiabatic electron excitation of polyatomic molecules leading to their eventual ionization and fragmentation. The described computational methods are a viable tool for studying the complex processes in multielectron atomic and molecular systems in strong laser fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号