首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a gold ion-imprinted polymer (GIP) by incorporating a dipyridyl ligand into an ethylene glycol dimethacrylate matrix which then was coated onto porous silica particles. The material was used for the selective extraction of ultratrace quantities of gold ion from mine stones, this followed by its quantitation by FAAS. The effects of concentration and volume of eluent, pH of the solution, flow rates of sample and eluent, and effect of potentially interfering ions, especially palladium and platinum, was investigated. The limit of detection is <0.2 ng?mL?1, the precision (RSD%) is 1.03 %, and recoveries are >99 %. In order to show the high selectivity and efficiency of the new sorbent, the results were compared to those obtained with more simple sorbents possessing the same functional groups. The accuracy of the method was demonstrated by the accurate determination of gold ions in a certified reference material. To the best of our knowledge, there is no report so far on an imprint for gold ions that has such a selectivity over Pd(II) and Pt(II) ions.
Figure
Coating of gold ion imprinted polymer on nanoporous silica  相似文献   

2.
In this work, we report the first application of ion‐imprinted technology via precipitation polymerization for simple and practical determination of rubidium ions. The rubidium‐ion‐imprinted polymer nanoparticles were prepared using dibenzo‐21‐crown‐7 as a selective ligand, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross linker, and 2,2′‐azobisisobutyronitrile as radical initiator. The resulting powder material was characterized using scanning electron microscopy, which showed colloidal nanoparticles of 100–200 nm in diameter and slightly irregular in shape. The maximum adsorption capacity of the ion imprinted particles was 63.36 μmol/g. The experimental conditions such as nature and concentration of eluent, pH, adsorption and desorption times, weight of the polymer material, aqueous phase and desorption agent volumes were also studied. Finally, selectivity of the prepared IIP particles toward rubidium ion was investigated in the presence of some foreign metal ions.  相似文献   

3.
An analytical method is reported for the preparation of K+‐imprinted nanoparticles using cryptand 222 as the complexing agent, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the crosslinker and 2,2′‐azobisisobutyronitrile as the radical initiator. The prepared particles have a diameter of 200–250 nm. The maximum adsorption capacity of potassium ion‐imprinted polymer particles was 120 μmol/g. The optimum pH for quantitative extraction was 9.0. The nature of the eluent, eluent concentration, adsorption and desorption times, weight of the polymer material, aqueous phase, and desorption volumes were also studied. The relative selectivity coefficients of K+/Li+, K+/Na+, K+/Rb+ and K+/Cs+ were 48.10, 4.80, 29.70, and 43.4, respectively. The relative standard deviation and limit of detection of the method were obtained 1.61% and 4.62 ng/L, respectively. Finally, the method was applied for the determination of potassium ions from different samples using flame photometry.  相似文献   

4.
A new adsorbent for molecularly imprinted solid phase extraction (MISPE) of metoprolol was synthesized using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross‐linking agent causing a non‐covalent, bulk, thermal radical‐polymerization. Control polymer (non‐imprinted polymer) was prepared under well defined conditions without the use of metoprolol. The synthesized polymers were characterized by IR spectroscopy, X‐ray diffraction and thermal analysis techniques. This polymer was used for the rapid extraction and preconcentration of metoprolol from real samples prior to spectrophotometric determination. Extraction efficiency and the influence of flow rates of sample and stripping solutions, pH, type of eluent for elution of metoprolol from polymer, break through volume and limit of detection were studied. The detection limit of the proposed method is 0.4 ng·mL?1. The method was applied successfully to the recovery and determination of metoprolol in tablets, human urine and plasma samples.  相似文献   

5.
Here, task‐specific ionic liquid solid‐phase extraction is proposed for the first time. In this approach, a thiourea‐functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid‐phase extraction column are used for the selective extraction and preconcentration of ultra‐trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5–40.0 ng/mL with the detection limit of 0.13 ng/mL (3sb/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents.  相似文献   

6.
Nitrogen doped nano porous graphene was used as an efficient sorbent in solid‐phase extraction process for simultaneous separation and pre‐concentration of metal ions lead (II), cadmium(II), and chromium(III)) in biological samples. Ultrasonic assisted in‐syringe dispersive micro solid phase extraction coupled with micro sampling atomic absorption spectrometry was utilized for the determination of metal ions. Nitrogen doped nano porous graphene was synthesized as a nano sorbent by chemical vapour deposition method. Methane and aniline were used as carbon and nitrogen sources. The characterization of sorbent was performed by field emission scanning electron microscope, transmission electron microscopy, atomic force microscope, fourier transform infrared, chemical element analysis and raman analysis. Effective parameters on the extraction efficiency such as pH, sorbent dosage, eluent volume and eluent concentration were optimized by central composite design and desirability function. Experimental results indicate that the optimal conditions for this extraction were pH = 6.4, 1.42 mg of sorbent, 100 μL of eluent, and 0.84 mol L‐1 of eluent concentration. The detection limits are as low as 1.5, 0.3 and 0.9 μg L‐1 for lead, cadmium, and chromium, respectively. The intra‐day precisions were 3.6, 4.38 and 2.94 and Inter‐day precision were 4.83, 5.26 and 4.52 for lead, cadmium, and chromium, respectively. Method performance was investigated by determination of mentioned heavy metals in complicated biological matrixes such as human plasma, urine and saliva samples with good recoveries.  相似文献   

7.
The efficiency of a molecularly imprinted polymer as a selective packing material for the solid‐phase extraction of imatinib mesylate sorption was investigated. The molecularly imprinted polymer was prepared using N,N′‐methylenebisacrylamide as a cross‐linker agent, N‐vinylcaprolactam as a thermo‐sensitive monomer, 1‐vinyl‐2‐pyrrolidone and methyl methacrylate as functional monomers, azobisisobutyronitrile as an initiator and imatinib mesylate as a template. The drug‐imprinted polymer was identified by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and scanning electron microscopy. It was found that this polymer can be used for determination of trace levels of imatinib mesylate with a recovery percentage that could reach over 90%. Furthermore, the synthesized molecularly imprinted polymer indicated higher selectivity towards imatinib mesylate than other compounds. From isotherm study, the equilibrium adsorption data of imatinib mesylate by imprinted polymer were analyzed by Langmuir, Freundlich, and Temkin isotherm models. The developed method was used for determination of imatinib mesylate in human fluid samples by high performance liquid chromatography with excellent results.  相似文献   

8.
A new method for the selective extraction of p‐aminosalicylic acid from aqueous and urine samples has been developed using magnetic molecularly imprinted polymer nanoparticles before determination by high‐performance liquid chromatography. The Fe3O4 nanoparticles were first prepared through the chemical coprecipitation of Fe2+ and Fe3+ and then coated with a vinyl shell. Subsequently, a layer of molecularly imprinted polymers was grafted onto the vinyl‐modified magnetic nanoparticles by precipitation polymerization. FTIR spectroscopy, scanning electron microscopy, vibrating sample magnetometry, and thermogravimetric analysis were applied to characterize the sorbent properties. Moreover, the predominant parameters affecting the magnetic solid phase extraction such as sample pH, sorption and elution times, the amount of sorbent, and composition and volume of eluent were investigated thoroughly. The maximum sorption capacity of the imprinted polymer toward p‐aminosalicylic acid was 70.9 mg/g, which is 4.5 times higher than that of the magnetic nonimprinted polymer. The magnetic molecularly imprinted polymer nanoparticles were applied for the selective extraction of p‐aminosalicylic acid from aqueous and urine samples and satisfactory results were achieved. The results illustrate that magnetic molecularly imprinted polymer nanoparticles have a great potential in the extraction of p‐aminosalicylic acid from environmental and biological matrices.  相似文献   

9.
In this work, a solid phase extraction method has been developed using a column filled with double-walled carbon nanotubes (DWNT) for preconcentration-separation of gold(III) ions prior to their flame atomic absorption spectrometric determination. Gold(III) ions were quantitatively recovered on DWNT in 1.0?mol?L?1 HCl. The influences of the analytical conditions including eluent type, sample volume, etc. on the recoveries of gold(III) ions were examined. The effects of concomitant ions were also investigated. The detection limits for gold(III) based on 3σ was calculated as 1.5?µg?L?1. The procedure presented in this paper was applied to the gold content of a number of water, geological and anodic slime samples with successful results.  相似文献   

10.
In this study, molecularly imprinting technology and stir bar absorption technology were combined to develop a microextraction approach based on a molecularly imprinted polymeric stir bar. The molecularly imprinted polymer stir bar has a high performance, is specific, economical, and simple to prepare. The obtained naftopidil‐imprinted polymer‐coated bars could simultaneously agitate and adsorb naftopidil in the sample solution. The ratio of template/monomer/cross‐linker and conditions of template removal were optimized to prepare a stir bar with highly efficient adsorption. Fourier transform infrared spectroscopy, scanning electron microscopy, selectivity, and extraction capacity experiments showed that the molecularly imprinted polymer stir bar was prepared successfully. To utilize the molecularly imprinted polymer stir bar for the determination of naftopidil in complex body fluid matrices, the extraction time, stirring speed, eluent, and elution time were optimized. The limits of detection of naftopidil in plasma and urine sample were 7.5 and 4.0 ng/mL, respectively, and the recoveries were in the range of 90–112%. The within‐run precision and between‐run precision were acceptable (relative standard deviation <7%). These data demonstrated that the molecularly imprinted polymeric stir bar based microextraction with high‐performance liquid chromatography was a convenient, rapid, efficient, and specific method for the precise determination of trace naftopidil in clinical analysis.  相似文献   

11.
建立了分子印迹柱-高效液相色谱法检测猪肉中磺胺嘧啶残留方法。制备了磺胺嘧啶的分子印迹柱,并优化了分子印迹柱的萃取条件。研究结果表明,在最佳萃取条件下,分子印迹柱-高效液相色谱法的加标回收率≥75.6%,相对标准偏差≤6.1%。分子印迹柱为固相萃取柱可以预浓缩与纯化猪肉样品中磺胺嘧啶。与氧化铝萃取柱比,分子印迹柱具有较好的重复性和萃取效率。本方法已成功用于实际猪肉样品中磺胺嘧啶含量的检测,结果满意。  相似文献   

12.
The aim of this work was to evaluate the use of a molecularly imprinted polymer as a selective solid‐phase extraction sorbent for the clean‐up and pre‐concentration of patulin from apple‐based food products. Ultra high pressure liquid chromatography coupled to ultraviolet absorbance detection was used for the analysis of patulin. The molecularly imprinted polymer was applied, for the first time, to the determination of patulin in apple juice, puree and jam samples spiked within the maximum levels specified by the European Commission No. 1881/2006. High recoveries (>77%) were obtained. The method was validated and found to be linear in the range 2–100 μg/kg with correlation coefficients greater than 0.965 and repeatability relative standard deviation below 11% in all cases. Compared with dispersive solid‐phase extraction (QuEChERS method) and octadecyl sorbent, the molecularly imprinted polymer showed higher recoveries and selectivity for patulin. The application of Affinisep molecularly imprinted polymer as a selective sorbent material for detection of patulin fulfilled the method performance criteria required by the Commission Regulation No. 401/2006, demonstrating the suitability of the technique for the control of patulin at low ppb levels in different apple‐based foods such as juice, puree and jam samples.  相似文献   

13.
A technique for solid-phase extraction utilizing pyridine-functionalized nanoporous silica (MCM-41, MCM-48 and SBA-15) was developed for the determination of gold in different samples using flame atomic absorption spectrometry. The effects of concentration and volume of eluent, pH of the solution, flow rate of extraction, sample volume and of potentially interfering ions on the efficiency of preconcentration and recovery was investigated. The limit of detection is lower than 45 pg mL?1. Under optimal conditions, the accuracy and precision (RSD%) of the method were calculated to be >99.5% and <0.7% for the two MCMs (41 and 48) and >89.5%, and <1.5% for SBA-15, respectively. The SPE technique was used to determine the concentration of gold in natural and industrial wastewater with satisfactory results.
Figure
A schematic model of modified mesoporous (MCM-41, MCM-48, SBA-15) with pyridine, and adsorption of Au(III)  相似文献   

14.
We describe ultrasonic‐assisted dispersive solid‐phase extraction based on ion‐imprinted polymer (UA‐DSPE‐IIP) nanoparticles for the selective extraction of silver ions. Ultrasound is a good and robust method to facilitate the extraction of target ions in the sorption step and elution of the target ions in the desorption step. The IIP nanoparticles used in the UA‐DSPE‐IIP were prepared by precipitation polymerization. To prepare the IIP nanoparticles, 2‐vinylpyridine, ethylene glycol dimethacrylate, 2,2′‐azobisisobutyronitrile, 2‐picolinic acid, silver and chloroform–methanol (50:50) solution were used as functional monomer, cross‐linker, initiator, silver‐binding ligand, template ion and porogen, respectively. The IIP nanoparticles were characterized using Fourier transformed infrared spectroscopy, thermogravimetric and differential thermal analysis, X‐ray diffraction and scanning electron microscopy. A Box–Behnken design was used for optimization of sorption and desorption steps in UA‐DSPE‐IIP. In the sorption step: pH of solution, IIP amount (mg), sonication time for sorption (min); in the desorption step: concentration of eluent (mol l−1), volume of eluent (ml), sonication time (min) for desorption were investigated and optimized by Box–Behnken design. The optimum conditions for the method were: pH of solution, 7; sonication time for sorption, 7 min; IIP amount, 17 mg; type and concentration of eluent, HCl 1.5 mol l−1; volume of eluent, 2 ml; sonication time for desorption, 140 s. Under the optimized conditions the limit of detection and relative standard deviation for the detection of silver ions using UA‐DSPE‐IIP were found to be 0.09 μg l−1 and <3%, respectively.  相似文献   

15.
The computer‐assisted design and synthesis of molecularly imprinted polymers for the simultaneous capture of six carbamate pesticides from environmental water are reported in this work. The quantum mechanical computational approach was employed to design the molecularly imprinted polymers with carbofuran as template. The interaction energies between the template molecule and different functional monomers in various solvents were calculated to assist in the selection of the functional monomer and porogen. The optimised molecularly imprinted polymer was subsequently used as a class‐selective sorbent in solid‐phase extraction for pre‐concentration and determination of carbamates from environmental water. The parameters influencing the extraction efficiency of the molecularly imprinted solid‐phase extraction procedure were systematically investigated to facilitate the class‐selective extraction. For the proposed method, linearity was observed over the range of 2–500 ng/mL with the correlation coefficient ranging from 0.9760 to 1.000. The limits of detection ranged from 0.2 to 1.2 ng/mL, and the limit of quantification was 4 ng/mL. These results confirm that computer‐assisted design is an effective evaluation tool for molecularly imprinted polymers synthesis, and that molecularly imprinted solid‐phase extraction can be applied to the simultaneous analysis of carbamates in environmental water.  相似文献   

16.
Bamboo carbon, an inexpensive, readily available material, has attracted great attention in recent years because of adsorptive properties. In this paper, the potential of bamboo carbon as a SPE adsorbent for the determination of phenols, was investigated. Phenols are important environmental contaminants that may adversely affect human health. Parameters influencing extraction efficiency, including type of eluent, eluent volume, amount of adsorbent, as well as sample pH, volume, and flow rate were investigated and optimized. The optimized results exhibited excellent linear relationships between peak area and phenol concentrations over the range of 2.0–100 ng/mL, with precision between 2.2–7.2%. The LODs were 0.06–0.4 ng/mL for the eight phenols tested. The proposed method has been successfully applied to the analysis of several real‐world environmental water samples. These results indicate that bamboo carbon may be used as a novel SPE adsorbent for the concentration and determination of phenols in real environmental water samples.  相似文献   

17.
We describe a new method for the separation and preconcentration of traces of Au(III) in environmental samples. Sorbents made from modified multiwalled carbon nanotubes and conducting polymers (PANI and PEDOT) were used for solid-phase extraction. The Au(III) ions are adsorbed as a result of the interaction with the electron pairs of =N- and -S- groups. Effects of pH value, flow rate and volume of sample, type, volume and concentration of eluent, and the adsorption capacity were investigated. The maximum adsorption capacity of MWCNTs/PANI and MWCNTs/PEDOT are 159 and 176?mg?g?1, and the detection limits of this method are below 0.3 and 0.5?ng?mL?1, respectively. The procedure was successfully applied to the determination of traces of Au(III) in a reference material and in environmental samples.
Figure
The multiwalled carbon nanotubes/conducting polymers (PANI and PEDOT) were used for solid-phase extraction of Au(III) ions. The Au(III) adsorbed on macromolecules chains; resulting from sharing an electron pair of = N?C and ?CS?C groups of conducting polymers with gold ions. The final results demonstrate that nanocomposites are convenient for preconcentration and determination of gold from environmental samples.  相似文献   

18.
A new method for selective solid-phase extraction and preconcentration of trace mercury(II) from aqueous solution was developed by using poly-allylthiourea as a new extractant. The procedure is based on the retention of analyte in the form of thiourea complex on a mini column of polymer resin. The effects of pH, eluent type, eluent concentration, sample volume, sample flow rate, and foreign ions on the recovery of the analyte were investigated using model solutions. At optimal pH value, the extraction capacity of the new sorbent was 1.13 mmol g?1. The adsorption behavior of mercury(II) on the sorbent can be described by a Langmuir adsorption isotherm equation. The method was validated by analyzing a certified reference material with the results being in agreement with those quoted by manufacturers. The method was applied to the determination of trace inorganic mercury(II) in natural water samples and vegetables with satisfactory results.  相似文献   

19.
In this work, multiwalled carbon nanotubes were reacted with N‐[3‐(triet‐hoxysilyl)propyl]isonicotinamide to prepare pyridine‐functionalized carbon nanotubes. This novel sorbent was characterized by infrared spectroscopy, thermal and elemental analysis, and scanning electron microscopy. Functionalized carbon nanotubes were applied for the preconcentration and determination of copper ions using flame atomic absorption spectrometry. Various parameters such as sample pH, flow rate, eluent type and concentration, and its volume were optimized. Under optimal experimental conditions, the limit of detection, the relative standard deviation, and the recovery of the method were 0.65 ng/mL, 3.2% and 99.4%, respectively. After validating the method using standard reference materials, the new sorbent was applied for the extraction and determination of trace copper(II) ions in fruit samples.  相似文献   

20.
In this work, the molecularly imprinted polymer was used as a selective sorbent in solid‐phase extraction method for the spectrophotometric determination of nortriptyline at 239 nm. Molecularly imprinted polymer was synthesized by pyrrole as a functional monomer in the presence of nortriptyline as a template. Several factors, consist of the concentration of the monomer to template ratio, amount of initiator, stirring rate, reaction time, the pH of the buffer solution, amount of sorbent, loading time, shaking rate of loading, extraction time, and shaking rate of extraction were evaluated due to their effectiveness in the preparation and extraction capability of molecularly imprinted polymer. Multivariate optimization methods, such as Plackett‐Burman and central composite designs, were employed to find and optimize the significant factors. Under the selected optimal conditions, molecularly imprinted polymer showed a linear range from 0.1 to 100 µmol/L (0.026 to 26 µg/mL) nortriptyline, a detection limit of 10.3 nmol/L (2.7 ng/mL), a highly repeatable (relative standard deviation of 3.7%) and reproducible response (relative standard deviation of 4.6%), and a good selectivity in the presence of structurally related molecules. Furthermore, molecularly imprinted polymer showed high extraction efficiency and was successfully used for the determination of nortriptyline in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号