首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
A new chelating resin was prepared by coupling Amberlite XAD-2 with Brilliant Green through an azo spacer. The resulting resin has been characterized by FTIR spectrometry, elemental analysis, and thermogravimetric analysis and studied for the preconcentration and determination of trace Pb(II) ions from solution samples. The anionic complex of Pb(II) and iodide was retained on the resin by the formation of an ion associate with Brilliant Green on Amberlite XAD-2 in weak acidic medium. The optimum pH value for sorption of the metal ion was 5.5. The sorption capacity of the functionalized resin is 53.8 mg/g. The chelating resin can be reused for 20 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 103% was obtained for the metal ion with 0.1 M EDTA as the eluting agent. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The resin was subjected to evaluation through batch binding and column chromatography of Pb(II). The equilibrium adsorption data of Pb(II) on modified resin were analyzed by Langmuir, Freundlich, and Temkin models. Based on equilibrium adsorption data, the Langmuir, Freundlich, and Temkin constants were determined to be 0.192, 13.189, and 3.418 at pH 5.5 and 25 degrees C. The method was applied for lead ion determination in tap water samples.  相似文献   

2.
A method is reported for surface grafting of polymer containing a functional monomer for metal chelating, poly[1-(N,N-bis-carboxymethyl)amino-3-allylglycerol-co-dimethylacrylamide] (poly(AGE/IDA-co-DMAA) onto silica modified by silylation with 3-mercaptopropyltrimethoxysilane. Monomer 1-(N,N-bis-carboxymethyl)amino-3-allylglycerol (AGE/IDA) was synthesized by reaction of allyl glycidyl ether with iminodiacetic acid. The resulting sorbent has been characterized using FT-IR, elemental analysis, thermogravimetric analysis (TGA), FT-Raman and scanning electron microscopy (SEM) and evaluated for the preconcentration and determination of trace Pb(II) in human biological fluid and environmental water samples. The optimum pH value for sorption of the metal ion was 5.5. The sorption capacity of functionalized resin was 15.06 mg g−1. The chelating sorbent can be reused for 15 cycles of sorption–desorption without any significant change in sorption capacity. A recovery of 96.2% was obtained for the metal ion with 0.5 M nitric acid as eluting agent. The profile of lead uptake by the sorbent reflects good accessibility of the chelating sites in the poly(AGE/IDA-co-DMAA)-grafted silica gel. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich–Peterson models. On the basis of equilibrium adsorption data the Langmuir, Freundlich and Temkin constants were determined as 0.70, 1.35 and 2.7, respectively at pH 5.5 and 20 °C. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption.  相似文献   

3.
4.
邱从交  刘美玲  李海涛 《应用化学》2010,27(9):1042-1045
将氨基吡啶功能基引入亲水性大孔球状聚甲基丙烯酸环氧丙酯(PGMA),合成了高亲水性的氨基吡啶螯合树脂(PGMA-AP),考察了该树脂对Hg2+、Pb2+、Cu2+、Ni2+等重金属离子的静态吸附性能及影响因素。 结果表明,该树脂对上述4种重金属离子在25 ℃时的静态饱和吸附容量分别为2.145、1.715、1.023和0.654 mmol/g,最佳吸附pH值为4.5~5.0,吸附性能随温度升高而改善,在实验浓度范围内该树脂对上述重金属离子的等温吸附符合Langmuir和Freundlich方程。  相似文献   

5.
Removal of lead from aqueous solutions by adsorption onto coconut-shell carbon was investigated. Batch adsorption experiments were performed to find out the effective lead removal at different metal ion concentrations. Adsorption of Pb2+ ion was strongly affected by pH. The coconut-shell carbon (CSC) exhibited the highest lead adsorption capacity at pH 4.5. Isotherms for the adsorption of lead on CSC were developed and the equilibrium data fitted well to the Langmuir, Freundlich, and Tempkin isotherm models. At pH 4.5, the maximum lead adsorption capacity of CSC estimated with the Langmuir model was 26.50 mg g(-1) adsorbent. Energy of activation (Ea) and thermodynamic parameters such as DeltaG, DeltaH, and DeltaS were evaluated by applying the Arrhenius and van't Hoff equations. The thermodynamics of Pb(II) on CSC indicates the spontaneous and endothermic nature of adsorption. Quantitative desorption of Pb(II) from CSC was found to be 75% which facilitates the sorption of metal by ion exchange.  相似文献   

6.
Neutral diol methacrylate‐based monoliths were developed for normal phase chromatography (NPC) and NP‐CEC of polar compounds including N‐glycans. Four different diol methacrylate‐based monoliths were synthesized via the copolymerization of a functional monomer using either glyceryl monomethacrylate (GMM) or glycidyl methacrylate (GMA) and a crosslinker either ethylene dimethacrylate (EDMA) or trimethylolpropane trimethacrylate (TRIM). While the GMM‐based monoliths yield in one reaction step polar diol methacrylate monoliths that are ready for use in NPC or NP‐CEC, the GMA‐based monoliths required a postmodification with hot sulfuric acid to convert the epoxy functions into diols before use in NPC or NP‐CEC. All the four monoliths are neutral and void of fixed charges on their surfaces but yet exhibited relatively strong EOF in NP‐CEC. The EOF is attributed to the adsorption of ions from the mobile phase thus forming the electric double layer necessary for producing a bulk mobile phase flow. Under the same in situ copolymerization conditions of GMM or GMA with either EDMA or TRIM, the GMM–EDMA monolith was the best choice in terms of retention, separation efficiency, EOF velocity in CEC and linear flow velocity in Nano‐LC.  相似文献   

7.
An iprodione‐imprinted polymer was prepared by copolymerization of methacrylamide and ethylene glycol dimethacrylate using a noncovalent imprinting approach. Methacrylamide was chosen using molecular dynamics simulations. To concentrate iprodione from hydro‐alcoholic solutions, batch sorption of iprodione on the imprinted polymer were conducted. The equilibrium time for iprodione sorption is 20 min, and the corresponding kinetic mechanism follows the pseudo‐second order indicating a strong interaction between iprodione and the imprinted polymer. Langmuir, Freundlich, and Dubinin–Radushkevich models were used to fit the isotherm of iprodione sorption. The imprinted polymer was found to be more efficient than the nonimprinted polymer for the uptake of iprodione, as revealed by its higher adsorption energy, affinity, and capacity. Finally, a selectivity study was conducted on the imprinted and the nonimprinted polymers to sorb three fungicides. It shows that the imprinted polymer could be used as a preconcentration phase in a multiresidue analysis of fungicides in hydroalcoholic medium.  相似文献   

8.
Cylindrical samples (≈5 mm × 20 mm) of poly(2‐hydroxyethyl methacrylate) and copolymers of 2‐hydroxyethyl methacrylate and furfuryl methacrylate were prepared, and the sorption of water into these cylinders was studied by the mass‐uptake method and by the measurement of the volume change at equilibrium. The equilibrium water content and volume change for the cylinders both varied systematically with the copolymer composition. The diffusion of water into the cylinders followed Fickian behavior, with the diffusion coefficients, dependent on the copolymer composition, varying from 2.00 × 10−11 m2s−1 for poly(2‐hydroxyethyl methacrylate) to 5.00 × 10−12 m2s−1 for poly(2‐hydroxyethyl methacrylate‐co‐tetrahydrofurfuryl methacrylate) with a 1 : 4 composition. The polymers that were rich in 2‐hydroxyethyl methacrylate were characterized by a water‐sorption overshoot, which was attributed to a slow reorientation of the polymer chains in the swollen rubbery regions formed after water sorption. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1939–1946, 2000  相似文献   

9.
A new chelating resin is prepared by coupling Amberlite XAD-4 with metaphenylendiamine through an azo spacer, characterized (elemental analysis, IR and thermogravimetric analysis (TGA)) and studied for preconcentration Rh (III) using Inductive Couple Plasma Atomic Emission Spectroscopy (ICP-AES) for rhodium monitoring. The optimum pH value for sorption of the metal ion was 6.5 (recovery 100%). The sorption capacity was found 0.256 mmol g− 1 of resin for Rh (III). The method has a detection limit and limit of quantification of 0.05 and 0.08 μg mL− 1 at pH 6.5, respectively. The chelating resin can be reused for 10 cycles of sorption-desorption without any significant change in sorption capacity. A recovery of 100% was obtained for the metal ion with 1.5 M HCl as eluting agent. The equilibrium adsorption data of Rh (III) on modified resin were analyzed by Langmuir and Freundlich models. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (2.48 kJ/mol) indicates that the adsorption is an endothermic process. The method was applied for rhodium ions determination from tap water sample.  相似文献   

10.
A solid‐supported samarium enolate successfully initiated the polymerization of 2‐(trimethylsilyloxy)ethyl methacrylate (TMS‐HEMA) through the living anionic process. In addition, the silyl group was readily removed by treatment of the beads with a weak acid to afford the corresponding well‐defined poly(methacrylate) having a hydroxyethyl group in the side chain (PHEMA). The hydroxyl group of the immobilized PHEMA on the beads was successfully acetylated to give poly(2‐acetoxyethyl methacrylate), which could be quantitatively isolated from the beads by trifluoroacetic acid treatment. Moreover, the hydroxyl group of the immobilized PHEMA could be utilized as an initiator for acid promoted ring opening polymerization of lactone to yield the corresponding graft copolymer. In this method, the residual and excess reagents could be removed by filtration, which demonstrated the applicability of the present technique to a novel method for construction of functional polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4417–4423, 2004  相似文献   

11.
高容量亚胺基二乙酸型螯合树脂的制备及吸附性能   总被引:1,自引:0,他引:1  
以甲基丙烯酸缩水甘油酯(GMA)为单体, 氯甲基化的交联聚苯乙烯树脂(CMCPS)为大分子引发剂, CuBr/2,2'-联吡啶(Bpy)为催化剂, 采用表面引发原子转移自由基聚合(SI-ATRP)技术, 使甲基丙烯酸缩水甘油酯聚合在CMCPS树脂表面, 制得了环氧化聚合物. 将该聚合物与亚胺基二乙酸(IDA)反应, 制备了高容量亚胺基二乙酸型螯合树脂(IDA-PGMA-CMCPS), 用元素分析对其进行了表征. 考察了螯合树脂对Cu2+的吸附性能及动力学和热力学参数. 该螯合树脂表面IDA接枝密度达8.15 mg/m2. 研究结果表明, 树脂对Cu2+的吸附量随离子浓度和温度的升高而增加, 当pH值为2.2时, 对Cu2+离子的吸附效果最佳. 树脂的静态饱和吸附容量为1339.66 mg/g, Langmuir和Freundlich方程均呈现良好的拟合度. 通过热力学平衡方程计算ΔG<0, ΔH=270.60 kJ/mol, ΔS>0, 表明该吸附过程是自发、 吸热、 熵增加的过程. 动力学研究结果表明, 准二级动力学方程能较好拟合动力学实验结果, 该过程符合准二级动力学模型.  相似文献   

12.
大孔交联聚甲基丙烯酸羟乙酯树脂的制备及其结构性能   总被引:2,自引:0,他引:2  
双甲基丙烯酸乙二醇酯;大孔树脂;孔结构;大孔交联聚甲基丙烯酸羟乙酯树脂的制备及其结构性能  相似文献   

13.
Batch equilibrium studies were conducted at 20 ± 0.5 °C with indigenously synthesized spherical resorcinol–formaldehyde resin beads, using radioanalytical technique, to determine their capacity for sorption of cesium ions from alkaline medium. Equilibrium isotherm studies were carried out, by varying the initial concentrations of cesium from 0.1 to 50 mM. The liquid-to-solid phase ratio of ~100 ml:1 g was maintained for all the sorption experiments. The equilibrium data were fitted to Langmuir and Freundlich isotherm models. It was observed that Freundlich isotherm explains sorption process nicely. The effect of resin size on percentage cesium ion uptake was also investigated, and 20–40 mesh size was found to be the optimum particle size. The cesium sorption capacity of the beads was determined to be ~238 mg/g. The kinetics of the sorption was studied at different initial cesium ion concentrations, and the kinetics data were fitted into various kinetics models. The kinetics of the cesium ion sorption was found to be pseudo second-order. The mechanistic steps involved were found to be complex, consisting of both film diffusion and intraparticle diffusion with film diffusion as the rate limiting step.  相似文献   

14.
The efficiency of a molecularly imprinted polymer as a selective packing material for the solid‐phase extraction of imatinib mesylate sorption was investigated. The molecularly imprinted polymer was prepared using N,N′‐methylenebisacrylamide as a cross‐linker agent, N‐vinylcaprolactam as a thermo‐sensitive monomer, 1‐vinyl‐2‐pyrrolidone and methyl methacrylate as functional monomers, azobisisobutyronitrile as an initiator and imatinib mesylate as a template. The drug‐imprinted polymer was identified by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and scanning electron microscopy. It was found that this polymer can be used for determination of trace levels of imatinib mesylate with a recovery percentage that could reach over 90%. Furthermore, the synthesized molecularly imprinted polymer indicated higher selectivity towards imatinib mesylate than other compounds. From isotherm study, the equilibrium adsorption data of imatinib mesylate by imprinted polymer were analyzed by Langmuir, Freundlich, and Temkin isotherm models. The developed method was used for determination of imatinib mesylate in human fluid samples by high performance liquid chromatography with excellent results.  相似文献   

15.
以钇(III)离子作为模板, 以4-乙烯吡啶(4-VP)、乙酰丙酮(Hacac)和钇(III)形成的三元配合物为功能单体、乙二醇二甲基丙烯酸酯(EDMA)为交联剂, 采用本体聚合法合成了钇(III)离子配位分子印迹聚合物. 系统研究了印迹聚合物对钇(III)离子的吸附性和选择性. 结果表明, 印迹聚合物对钇(III)离子有很好的亲和性, 达到吸附平衡的时间为60 min, 最大吸附量为12.4 mg&#8226;g&#8722;1, 重复使用时性能稳定, 而且印迹聚合物对钇(III)离子具有较强的选择性识别能力.  相似文献   

16.
Novel amphiphilic star‐block copolymers, star poly(caprolactone)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] and poly(caprolactone)‐block‐poly(methacrylic acid), with hyperbranched poly(2‐hydroxyethyl methacrylate) (PHEMA–OH) as a core moiety were synthesized and characterized. The star‐block copolymers were prepared by a combination of ring‐opening polymerization and atom transfer radical polymerization (ATRP). First, hyperbranched PHEMA–OH with 18 hydroxyl end groups on average was used as an initiator for the ring‐opening polymerization of ε‐caprolactone to produce PHEMA–PCL star homopolymers [PHEMA = poly(2‐hydroxyethyl methacrylate); PCL = poly(caprolactone)]. Next, the hydroxyl end groups of PHEMA–PCL were converted to 2‐bromoesters, and this gave rise to macroinitiator PHEMA–PCL–Br for ATRP. Then, 2‐dimethylaminoethyl methacrylate or tert‐butyl methacrylate was polymerized from the macroinitiators, and this afforded the star‐block copolymers PHEMA–PCL–PDMA [PDMA = poly(2‐dimethylaminoethyl methacrylate)] and PHEMA–PCL–PtBMA [PtBMA = poly(tert‐butyl methacrylate)]. Characterization by gel permeation chromatography and nuclear magnetic resonance confirmed the expected molecular structure. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl methacrylate) blocks gave the star‐block copolymer PHEMA–PCL–PMAA [PMAA = poly(methacrylic acid)]. These amphiphilic star‐block copolymers could self‐assemble into spherical micelles, as characterized by dynamic light scattering and transmission electron microscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6534–6544, 2005  相似文献   

17.
A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63 mg Cr(VI)/g at initial pH of 3.0 at 30 °C for the particle size of 1.00–1.25 mm with the use of 12.5, 16.5 and 2.1 g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

18.
A series of magnetic semi‐interpenetrating polymer network (semi‐IPN) hydrogels was prepared in one‐stage strategy composed of linear poly(vinyl alcohol) (PVA) chains and magnetic γ‐Fe2O3 nanoparticles entrapped within the cross‐linked poly(acrylamide‐co‐vinylimidazole) (poly(AAm‐co‐VI)) network. The influence of PVA, weight ratio of AAm:VI, γ‐Fe2O3, and MBA on the swelling properties of the obtained nanocomposite hydrogels was evaluated. The prepared magnetic semi‐IPN hydrogels were fully characterized and used as absorbent for removal of Pb(II) and Cd(II) from water. Factors that influence the metal ion adsorption such as solution pH, contact time, initial metal ion concentration, and temperature were studied in details. The experimental results were reliably described by Langmuir adsorption isotherms. The adsorption capacity of semi‐IPN nanocomposite for Pb(II) and Cd(II) were175.80 and 149.76 mg g?1, respectively. The kinetic experimental data indicated that the chemical sorption is the rate‐determining step. According to thermodynamic studies, Pb(II) and Cd(II) adsorption on the hydrogels was endothermic and also chemical in nature. The prepared magnetic PVA/poly(AAm‐co‐VI) semi‐IPN hydrogels could be employed as efficient and low‐cost adsorbents of heavy metal ions from water. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, we report the first application of ion‐imprinted technology via precipitation polymerization for simple and practical determination of rubidium ions. The rubidium‐ion‐imprinted polymer nanoparticles were prepared using dibenzo‐21‐crown‐7 as a selective ligand, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross linker, and 2,2′‐azobisisobutyronitrile as radical initiator. The resulting powder material was characterized using scanning electron microscopy, which showed colloidal nanoparticles of 100–200 nm in diameter and slightly irregular in shape. The maximum adsorption capacity of the ion imprinted particles was 63.36 μmol/g. The experimental conditions such as nature and concentration of eluent, pH, adsorption and desorption times, weight of the polymer material, aqueous phase and desorption agent volumes were also studied. Finally, selectivity of the prepared IIP particles toward rubidium ion was investigated in the presence of some foreign metal ions.  相似文献   

20.
A new preconcentration method is presented for lead on TAN‐loaded polyurethane foam (PUF) and its measurement by differential pulse anodic stripping voltammetry (DPASV). The optimum sorption conditions of 1.29 × 10?5 M solution of Pb(II) ions on TAN‐loaded PUF were investigated. The maximum sorption was observed at pH 7 with 20 minutes equilibrated time on 7.25 mg mL?1 of TAN‐loaded foam. The kinetic study indicates that the overall sorption process was controlled by the intra‐particle diffusion process. The validity of Freundlich, Langmuir and Dubinin ‐ Radushkevich adsorption isotherms were tested. The Freundlich constants 1/n and KF are evaluated to be 0.45 ±0.04 and (1.03 +0.61) × 10?3 mol g?1, respectively. The monolayer sorption capacity and adsorption constant related to the Langmuir isotherm are (1.38 ± 0.08) × 10?5 mol g?1 and (1.46 ± 0.27) × 105 L mol?1, respectively. The mean free energy of Pb(II) ions sorption on‐TAN loaded PUF is 11.04 ± 0.28 kJ mol?1 indicating chemisorption phenomena. The effect of temperature on the sorption yields thermodynamics parameters of ΔH, ΔS and ΔG at 298 K that are 15.0 ± 1.4 kJ mol?1, 74 ±5 J mol?1 K?1 and ‐7.37 ± 0.28 kJ mol?1, respectively. The positive values of enthalpy (ΔH) and entropy (ΔS) indicate the endothermic sorption and stability of the sorbed complexes are entropy driven. However, the negative value of Gibb's free energy (ΔG) indicates the spontaneous nature of sorption. On the basis of these data, the sorption mechanism has been postulated. The effect of different foreign ions on the sorption and desorption studies were also carried out. The method was successfully applied for the determination of lead from different water samples at ng levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号