首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TiO2 nanoparticles have been prepared by simple chemical precipitation method and annealed at different temperatures. The as-prepared TiO2 are amorphous, and they transform into anatase phase on annealing at 450 °C, and rutile phase on annealing at 900 °C. The X-ray diffraction results showed that TiO2 nanoparticles with grain size in the range of 21–24 nm for anatase phase and 69–74 nm for rutile phase have been obtained. FESEM images show the formation of TiO2 nanoparticles with small size in structure. The FTIR and Raman spectra exhibited peaks corresponding to the anatase and rutile structure phases of TiO2. Optical absorption studies reveal that the absorption edge shifts towards longer wavelength (red shift) with increase of annealing temperature.  相似文献   

2.
TiO2 nanoparticles are prepared by a sol–gel method and annealed both in air and vacuum at different temperatures to obtain anatase, anatase–rutile mixed phase and rutile TiO2 nanoparticles. The phase conversion from anatase to anatase–rutile mixed phase and to rutile phase takes place via interface nucleation between adjoint anatase nanocrystallites and annealing temperature and defects take the initiate in this phase transformation. The samples are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–vis and photoluminescence spectroscopy (PL). Anatase TiO2 exhibits a defect related absorption hump in the visible region, which is otherwise absent in the air annealed samples. The Urbach energy is very high in the vacuum annealed and in the anatase–rutile mixed phase TiO2. Vacuum annealed anatase TiO2 has the lowest emission intensity, whereas an intense emission is seen in its air annealed counterpart. The oxygen vacancies in the vacuum annealed samples act as non-radiative recombination centers and quench the emission intensity. Oxygen deficient anatase TiO2 has the longest carrier lifetime. Time resolved spectroscopy measurement shows that the oxygen vacancies act as efficient trap centers of electrons and reduce the recombination time of the charge carriers.  相似文献   

3.
Nanostructured TiO2 thin films have been prepared through chemical route using sol-gel and spin coating techniques. The deposited films were annealed in the temperature range 400–1000°C for 1 h. The structure and microstructure of the annealed films were characterized by GAXRD, micro-Raman spectroscopy and AFM. The as-deposited TiO2 thin films are found to be amorphous. Micro-Raman and GAXRD results confirm the presence of the anatase phase and absence of the rutile phase for films annealed up to 700°C. The diffraction pattern of the film annealed at 800 to 1000°C contains peaks of both anatase and rutile reflections. The intensity of all peaks in micro-Raman and GAXRD patterns increased and their width (FWHM) decreased with increasing annealing temperature, demonstrating the improvement in the crystallinity of the annealed films. Phase transformation at higher annealing temperature involves a competition among three events such as: grain growth of anatase phase, conversion of anatase to rutile and grain growth of rutile phase. AFM image of the asdeposited films and annealed films indicated exponential grain growth at higher temperature.   相似文献   

4.
In the present work anatase–rutile transformation temperature and its effect on physical/chemical properties as well as photocatalytic activity of TiO2 particles were investigated. The characterisation of the synthesised and annealed TiO2 particles were determined by X-Ray Powder Diffraction (XRD), scanning electron microscope (SEM), dynamic light scattering (DLS) and Brunauer–Emmett–Teller surface area analysis (BET). The refraction in the ultraviolet–visible (UV–vis) range was assessed using a dual-beam spectrophotometer. The photocatalytic performance of the particles was tested on methylene blue solution. The XRD data indicated that the percentage of rutile increased with the annealing temperature and almost 100% of anatase transformed to rutile at 1000 °C. In addition, the phase transformation was a linear function of annealing temperature so phase composition of TiO2 can be controlled by changing the annealing temperature. The SEM and BET results presented the increase of agglomerate size and the decrease of specific surface area with the increasing annealing temperature. This proved that anatase has smaller particle size and higher surface area than rutile. The photocatalytic activity of the annealed TiO2 powders reduced with the increase of annealing temperature. The samples annealed at 900 °C and 925 °C with anatase: rutile ratio of 92:8 and 77:23, respectively, showed the best activity. These results suggested that the photocatalytic activity of TiO2 particles is a function of phase composition. Thus it can be enhanced by changing its phase composition which can be controlled by annealing temperature.  相似文献   

5.
Thin films of Ti1−xCoxO2 (x=0 and 0.03) have been prepared on sapphire substrates by spin-on technique starting from metalorganic precursors. When heat treated in air at 550 and 700 °C, respectively, these films present pure anatase and rutile structures as shown both by X-ray diffraction and Raman spectroscopy. Optical absorption indicate a high degree of transparency in the visible region. Such films show a very small magnetic moment at 300 K. However, when the anatase and the rutile films are annealed in a vacuum of 1×10−5 Torr at 500 and 600 °C, respectively, the magnetic moment, at 300 K, is strongly enhanced reaching 0.36μB/Co for the anatase sample and 0.68μB/Co for the rutile one. The ferromagnetic Curie temperature of these samples is above 350 K.  相似文献   

6.
Highly ordered titanium oxide (TiO2) nanotubes were prepared by electrolytic anodization of titanium electrodes. Morphological evolution and phase transformations of TiO2 nanotubes on a Ti substrate and that of freestanding TiO2 membranes during the calcinations process were studied by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction microscopy. The detailed results and mechanisms on the morphology and crystalline structure were presented. Our results show that a compact layer exists between the tubular layer and Ti substrate at 600 °C, and the length of the nanotubes shortens dramatically at 750 °C. The freestanding membranes have many particles on their tubes during calcinations from 450 to 900 °C. The TiO2 nanotubes on the Ti substrate transform to rutile crystals at 600 °C, while the freestanding TiO2 membranes retain an anatase crystal with increasing temperature to 800 °C. The photocatalytic activity of TiO2 nanotubes on a Ti substrate annealed at different temperatures was investigated by the degradation of methyl orange in aqueous solution under UV light irradiation. Due to the anatase crystals in the tubular layer and rutile crystals in the compact layer, TiO2 nanotubes annealed at 450 °C with pure anatase crystals have a better photocatalytic activity than those annealed at 600 °C or 750 °C.  相似文献   

7.
To study the relationship between the phase structures of TiO2 and the photoinduced hydroxyl radicals (OH), TiO2 nanocrystallines were synthesized by a hydrolysis-precipitate method using tetrabutylorthotitanate (TBOT) as precursor, and then calcined at 450, 600, 700, 800 and 900 °C for 2 h, respectively. The calcined samples were characterized by X-ray diffraction and N2 sorption. The formation rate of OH on the surface of UV-illuminated TiO2 was detected by the photoluminescence (PL) technique using terephthalic acid as a probe molecule. The results show that with increasing calcined temperatures, the amorphous (Am) TiO2 precursor begins to turn into anatase (A) at 450 °C and rutile (R) phase appears at 600 °C, which is completely turned into the rutile phase at 900 °C. The BET specific surface areas of the catalyst decrease as the calcined temperatures increase. TiO2 sample calcined at 600 °C, with a mixed phase of anatase and rutile, shows the highestOH formation rate, and the order of the OH formation rate is as follows: A+R>A>R>Am. Phase structures of TiO2 play a more important role than specific surface areas in the OH formation rate. Two phase structure of anatase and rutile with a proper ratio is beneficial to the OH formation due to decrease of the combination rate of photo-generated electrons and holes. Our experimental result implies that the mixed phase of anatase and rutile can markedly enhance the photocatalytic activity of TiO2.  相似文献   

8.
TiO2 thin film was deposited on non-heated Si(1 0 0) substrate by RF magnetron sputtering. The as-deposited films were annealed by a conventional thermal annealing (CTA) and rapid thermal annealing (RTA) at 700 and 800 °C, and the effects of annealing temperature and method on optical properties of studied films were investigated by measuring the optical band gaps and FT-IR spectra. And we also compared the XRD patterns of the studied samples. The as-deposited film showed a mixed structure of anatase and brookite. Only rutile structures were found in samples annealed above 800 °C by CTA, while there are no special peaks except the weak brookite B(2 3 2) peak for the sample annealed at (or above) 800 °C by RTA. FT-IR spectra show the broad peaks due to Ti-O vibration mode in the range of 590-620 cm−1 for the as-deposited film as well as samples annealed by both annealing methods at 700 °C. The studied samples all had the peaks from Si-O vibration mode, which seemed to be due to the reaction between TiO2 and Si substrate, and the intensities of these peaks increased with increasing of annealing temperature. The optical band gap of the as-deposited film was 3.29 eV but it varied from 3.39 to 3.43 eV as the annealing temperature increased from 700 to 800 °C in the samples annealed by CTA. However, it varied from 3.38 to 3.32 eV as the annealing temperature increased from 700 to 800 °C by RTA.  相似文献   

9.
We study the temperature-dependent transformation of two distinctly synthesized TiO2 nanoparticles from the anatase to the rutile phase. These studies are carried out over the temperature range extending from room temperature to an excess of 800 °C where the anatase to rutile conversion is found to occur. Results obtained for both a sol-gel-generated nanocolloid (3-20 nm) and a sol-gel-generated micelle nanostructure (∼40 nm) are evaluated. While the TiO2 nanocolloid structures aggregate to form larger crystallites as a function of increasing temperature with sizes comparable to the sol-gel-generated micelle structures, the resulting anatase crystallites, which are of a diameter 40-50 nm, appear to transform to comparable or slightly smaller rutile structures at 800 °C. This is in contrast to the transformation to larger rutile structures, observed for larger anatase particles. The importance of kinetic effects is considered as it enhances the rate of anatase to rutile conversion. These characteristics are established using a combination of Raman spectroscopic, X-ray diffraction, and scanning electron microscopy. The relative playoffs of the Raman and X-ray diffraction techniques are considered as they are used for the analysis of particles at the nanoscale, especially when phase transformations are evaluated.  相似文献   

10.
TiO2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm2. Microcracks at medium laser fluence of 1000 mJ/cm2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm2. The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO2 film might be used for adjustable filters.  相似文献   

11.
Titanium dioxide (TiO2) rutile single crystal was irradiated by infrared femtosecond (fs) laser pulses with repetition rate of 250 kHz and phase transformation of rutile TiO2 was observed. Micro-Raman spectra show that the intensity of Eg Raman vibrating mode of rutile phase increases and that of A1g Raman vibrating mode decreases apparently within the ablation crater after fs laser irradiation. With increasing of irradiation time, the Raman vibrating modes of anatase phase emerged. Rutile phase of TiO2 single crystal is partly transformed into anatase phase. The anatase phase content transformed from rutile phase increased to a constant with increasing of fs pulse laser irradiation time. The study indicates the more stable rutile phase is transformed into anatase phase by the high pressure produced by fs pulse laser irradiation.  相似文献   

12.
In this research, dye-sensitized solar cells based on TiO2 micro-pillars fabricated by inductive couple plasma etcher were investigated by analyses of X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, ultraviolet-visible absorption spectra (UV-vis), and current-voltage characteristics. X-ray diffraction patterns show that the TiO2 anatase phase forms while sintering at 450 °C for 30 min. The SEM images reveal that the diameter and height of TiO2 micro-pillars are about 3 and 0.8 μm, respectively. The measurements of contact angle between TiO2 micro-pillars and deionized water (DI water) reveal that the TiO2 micro-pillars is super-hydrophilic while annealed at 450 °C for 30 min.The absorption spectrum of TiO2 micro-pillars is better than TiO2 thin film and can be widely improved in visible region with N3 dye adsorbed. The results of current-voltage (I-V) characteristics analysis reveal that dye-sensitized solar cell with TiO2 micro-pillars electrode has better I-V characteristics and efficiency than TiO2 film electrodes. This result may be due to the annealed TiO2 micro-pillars applied on the electrode of dye-sensitized solar cell can increase the contact area between TiO2 and dye, resulting in the enhancement of I-V characteristics and efficiency for dye-sensitized solar cell.  相似文献   

13.
In this work, structural investigations of TiO2 thin films doped with Tb at the amount of 0.4, 2 and 2.6 at.% have been outlined. Thin films were deposited on Si and SiO2 substrates by high energy reactive magnetron sputtering from mosaic Ti-Tb target. The influence of Tb dopant amount, post-annealing treatment and kind of applied substrate on microstructure has been discussed. Thin films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM). XRD analysis revealed the existence of crystalline TiO2 in anatase and rutile forms, depending on Tb amount in examined samples. AFM images show that as-deposited samples with 0.4 at.% concentration of terbium (anatase structure) have bigger crystallites as compared to 2% and 2.6 at.% of Tb (rutile structure). The additional annealing at 1070 K results in a mixed anatase (77%) and rutile (23%) structure.  相似文献   

14.
The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm−1 (A1g), 197 cm−1 (Eg), 398 cm−1 (B1g), 515 cm−1 (A1g), and 640 cm−1 (Eg) assigned to anatase which were replaced by bands at 143 cm−1 (B1g), 235 cm−1 (2 phonon process), 448 cm−1 (Eg) and 612 cm−1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process.  相似文献   

15.
Influence of magnetic annealing at 823 K up to 10 T (T) on the phonon behaviors of nanocrystalline BiFeO3 was investigated by Raman spectroscopy. The frequencies of fundamental Raman modes increase obviously with increasing annealing magnetic field, and the intensity of the 1260 cm−1 two-phonon mode decreases. The pronounced anomalies of Raman phonon modes under magnetic annealing are attributed to the change of the spin-phonon coupling due to the modulation of spiral spin order. Furthermore, the temperature dependence of Raman peak positions, for the two prominent modes (147 and 176 cm−1), show no notable anomaly around TN except the sample annealed under 10 T magnetic field; meanwhile, in this sample, another obvious phonon anomaly occurs at ∼150 K (another magnetic phase transition point), which indicate that stronger magnetic annealing with 10 T intensely enhances the spin-phonon coupling, and possibly increases magnetoelectric coupling of nanocrystalline BiFeO3 due to severely modulation of spiral spin order.  相似文献   

16.
In this research nanosized titanium nitride powder was synthesized through reaction of titanium oxide with ammonia gas. The reaction was carried out at a very slow heating rate. Two different TiO2 starting powders contained rutile and anatase phase and differed in initial particle size and surface area. The crystallite size of TiN powders synthesized at 1000 °C was obtained about 40 nm for anatase sample. Surface area and particle size were found to be 19 m2/g, 70 nm for rutile sample and 31 m2/g, 39 nm for anatase sample, respectively. The rutile sample showed an increasing trend in surface area during conversion to the nitride, whilst the anatase sample followed an adverse trend. TiN powder synthesized from anatase had the highest surface area and smallest particle size due to the specification of initial precursor.  相似文献   

17.
Reduction of stoichiometric metal oxide can be reached by two processes: oxygen vacancies or hydrogenation. We present DFT-GGA periodic calculations for the O vacancies in the bulk and selected slabs of TiO2-rutile, TiO2-anatase, and SnO2-rutile as well as their hydrogenation. We focus on the comparison between these structures. Anatase is found more difficult to reduce than rutile. Contrary to the reduced rutile structure which has a high spin state, all the electrons of the reduced anatase are paired. SnO2 is more easily reduced than TiO2. Strongly reduced (1 1 0) surfaces undergo reconstructions. Hydrogenated structures of rutile and anatase show also different patterns. While on the rutile (1 1 0) face, all the H atoms are adsorbed on the bridging O atoms in rows and form bridging OH groups, in the most stable hydrogenated anatase (1 0 0) structure only half of them are located while the other half is bound to the fivefold coordinated Ti surface atoms.  相似文献   

18.
We have systematically studied compounds of Co/ TiO2 by the sol–gel method. X-ray diffraction result indicates that Co influences the anatase to rutile phase transition. In addition, the higher the content of Co, the higher the intensity of rutile peaks. In order to study the reason Co promotes phase transition from metastable anatase to rutile, first-principles methods are used to study the Co/ TiO2 system. The calculation results showed good agreement with the experiments.  相似文献   

19.
Gang Li  Jing Lu 《Applied Surface Science》2009,255(16):7323-7328
Well-ordered TiO2 nanotube arrays were prepared by electrochemical anodization of titanium in aqueous electrolyte solution of H3PO4 + NH4F at a constant voltage of 20 V for 3 h, followed by calcined at various temperatures. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) were used to characterize the samples. The results showed that the as-prepared nanotube arrays before being calcined were amorphous and could transform to anatase phase at a heat treatment temperature higher than 400 °C. As the calcination temperatures increased, crystallization of anatase phase enhanced and rutile phase appeared at 600 °C. However, further increasing the calcination temperature would cause the collapse of nanotube arrays. PL intensity of the nanotube arrays annealed at 500 °C was the lowest, which was probably ascribed to better crystallization together with fewer surface defects of the nanotube arrays.  相似文献   

20.
Intense and broad photoluminescence (PL) emission at room temperature was observed on structurally disordered Ba[Zr0.25Ti0.75]O3 (BZT) powders synthesized by the polymeric precursor method. BZT powders were annealed at 573 K for different times and at 973 K for 2 h in oxygen atmosphere. The single-phase cubic perovskite structure of the powder annealed at 973 K for 2 h was identified by X-ray diffraction and Fourier transform Raman techniques. PL emission increased with the increase of annealing time, which reached its maximum value in the powder annealed at 573 K for 192 h. First principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered models. The theoretical calculations and experimental measurements of Ultraviolet-visible absorption spectroscopy indicate that the presence of intermediary energy levels in the band gap is favorable for the intense and broad PL emission at room temperature in disordered BZT powders. The PL behavior is probably due the existence of a charge gradient on the disordered structure, denoted by means of a charge transfer process from [TiO5]-[ZrO6] or [TiO6]-[ZrO5] clusters to [TiO6]-[ZrO6] clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号