首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, poly(methyl methacrylate) (PMMA)/organically modified montmorillonite (O-MMT) composite microfibers were firstly prepared by emulsion polymerization combined with electrospinning, and then coated by nanosize titanium dioxide (TiO2) using RF magnetron sputter technique. The modified surfaces of PMMA/O-MMT composite microfibers were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), UV-vis spectroscopy and drop shape analyzer. Finally, the photocatalytic properties of TiO2 coated PMMA/O-MMT composite microfiber membranes were evaluated by degradation of methylene blue(MB) under UV illumination. The experimental results revealed that anatase-TiO2 and rutile-TiO2 nanoparticles were well spread and physically deposited on the surface of PMMA/O-MMT microfibers, and the wettability of the PMMA/O-MMT composite microfibers was improved after surface modification by sputter coating. Furthermore, the PMMA/O-MMT microfibers membrane coated with TiO2 performed well in photocatalytic degradation of MB.  相似文献   

2.
《Composite Interfaces》2013,20(3):251-262
Multi-walled carbon nanotubes (MWCNTs) and titanium dioxide nanocomposites (MWCNTs/TiO2) were fabricated by a simple novel colloidal processing route and tested as a photocatalyst for degradation of methylene blue under UV irradiation. The novel idea behind this work is to make MWCNTs and TiO2 nanoparticle suspensions separately highly oppositely charged and utilize the electrostatic force of attraction between two entities to deposit nanotitania onto MWCNTs surface. Particle charge detector, scanning electron microscopy, transmission electron microscope, energy dispersive X-rays, X-rays diffraction (XRD), and Raman spectroscopy were used to characterize the composite. XRD and Raman spectroscopic analysis showed the crystalline structure of deposited TiO2 over MWCNTs surface structure as anatase phase. It was found that MWCNTs/TiO2 composite structure have much higher photocatalytic activity compared to TiO2 nanoparticles. The composite material developed may find potential applications in the degradation of organic pollutants in aqueous medium under UV irradiation.  相似文献   

3.
A series of nanocomposites of poly(3-hexylthiophene) with Fe N-doped TiO2 (P3HT/Fe N/TiO2) were synthesized by the chemical method in situ. The structure of the prepared composites was characterized using X-ray diffraction patterns (XRD), infrared spectroscopy (IR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Optical and electrochemical properties were determined using UV-vis spectroscopy, fluorescence spectroscopy, and cyclic voltammetry. These tests indicated that P3HT/Fe N/TiO2 is a new p-n semiconductor. Two solar cells based on P3HT/Fe N/TiO2 were manufactured and studied.  相似文献   

4.
Sol-gel nanostructured titania materials have been reported to have applications in areas ranging from optics via solar energy to gas sensors. In order to enhance the photocatalytic activity, there are many studies regarding the doping of titanium dioxide (TiO2) material with either non-metals (S, C, N, P) or metals (Ag, Pt, Nd, Fe). The present work has studied some un-doped and Pd-doped sol-gel TiO2 materials (films and gels), with various surface morphologies and structures, obtained by simultaneous gelation of both precursors Ti(OEt)4 and Pd(acac)2. Their structural evaluation and crystallization behavior with thermal treatment were followed by DTA/TG analysis, infrared (IR) spectroscopy, Fourier transform infrared (FTIR), spectroellipsometry (SE), X-ray diffraction (XRD) and atomic force microscope (AFM). The influence of Pd on TiO2 crystallization for both supported and un-supported materials was studied (lattice parameters, crystallite sizes, internal microstrains). The changes in the optical properties of the TiO2-based vitreous materials were correlated with the changes of the structure. The hydrophilic properties of the films were also connected with their structure, composition and surface morphology.  相似文献   

5.
A novel composite alkaline polymer electrolyte based on poly(vinyl alcohol) (PVA) polymer matrix, titanium dioxide (TiO2) ceramic fillers, KOH, and H2O was prepared by a solution casting method. The properties of PVA-TiO2-KOH alkaline polymer electrolyte films were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and AC impedance techniques. DSC and XRD results showed that the domain of amorphous region in the PVA polymer matrix augmented when TiO2 filler was added. The SEM result showed that TiO2 particles dispersed into the PVA matrix although some TiO2 aggregates of several micrometers were formed. The alkaline polymer electrolyte showed excellent electrochemical properties. The room temperature (20 °C) ionic conductivity values of typical samples were between 0.102 and 0.171 S cm−1. The Zn-Ni secondary battery with the alkaline polymer electrolyte PVA-TiO2-KOH had excellent electrochemical property at the low charge-discharge rate.  相似文献   

6.
In this work, we have prepared electrochemically and studied a composite materials based on an organic conducting polymer, polyaniline (PANI), in which inorganic semiconductor titanium dioxide (TiO2) particles were incorporated with different concentrations. The polyaniline/titanium dioxide composite material which had been deposited by cyclic voltammetry on substrates of indium tin oxide was then characterized. The cyclic voltammogram showed one redox couple characteristic of the oxidation and reduction states of the produced composite material. The impedance spectroscopy study showed that the resistance of the film increases with the TiO2 cocntent incorporated in the polymer. The incorporation of TiO2 in PANI covering the surfaces was confirmed by the scanning electron microscopy and the energy dispersive X-ray analysis. The morphological analysis of the film surfaces showed that the TiO2 nanoparticle increased the roughness. These observations allow to consider a new approach to improve the physicochemical properties of the interface between the organic and inorganic material. The IV characteristics of PANI+TiO2 heterostructure diode showed the nonlinear nature of the IV curve of PANI+TiO2 heterostructure device.  相似文献   

7.
The electronic structures of titanium dioxide (TiO2) doped with 3d transition metals (V, Cr, Mn, Fe, Co and Ni) have been analyzed by ab initio band calculations based on the density functional theory with the full-potential linearized-augmented-plane-wave method. When TiO2 is doped with V, Cr, Mn, Fe, or Co, an electron occupied level occurs and the electrons are localized around each dopant. As the atomic number of the dopant increases the localized level shifts to lower energy. The energy of the localized level due to Co is sufficiently low to lie at the top of the valence band while the other metals produce midgap states. In contrast, the electrons from the Ni dopant are somewhat delocalized, thus significantly contributing to the formation of the valence band with the O p and Ti 3d electrons. Based on a comparison with the absorption and photoconductivity data previously reported, we show that the t2g state of the dopant plays a significant role in the photoresponse of TiO2 under visible light irradiation.  相似文献   

8.
TiO2 (anatase and rutile) nanoparticles with an average crystallite size of 20-40 nm have been prepared at room temperature by polyol-mediated synthesis technique in a semi-aqueous solvent medium using titanium iso-propoxide as the titanium source, acetone as the oil phase and ethylene glycol as the stabilizer. Phase and microstructure of the resultant materials have been characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photocatalytic degradation of acetaldehyde using TiO2 nanoparticles was investigated by gas-chromatography technique.  相似文献   

9.
Fe2O3/SrTiO3 composite powders have been prepared and their photocatalytic activities were investigated by photooxidizing methanol. These powders were characterized by ultraviolet (UV)-visible diffuse reflectance spectra, scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that the Fe2O3/SrTiO3 composite powders with optimum proportion exhibited higher photocatalytic activity than pure SrTiO3, Fe2O3 and TiO2 (P25) under visible light (λ>440 nm) irradiation. The SEM image of the composite powders showed that SrTiO3 and Fe2O3 particles contacted well. Further research revealed that the calcination temperature is an important factor in the preparation of the composite powder with relatively high photocatalytic ability.  相似文献   

10.
A mesoporous S,I-codoped TiO2 photocatalyst with high visible light photocatalytic activity was synthesized through the hydrolysis and condensation of titanium isopropoxide with thiourea and iodic acid as the precursors. The as-prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-vis diffuse reflectance (DRS), X-ray photoelectron spectroscopy (XPS), Fourier translation infrared spectroscopy (FT-IR), and N2 adsorption. The results showed that the cations of S6+ and I5+ could substitute for some of the lattice titanium (Ti4+). The S,I-codoping forms the new bands above the valence band and narrows the band-gap of the TiO2, then shifts the absorption edge from UV light region to visible light range. The activity of the catalyst was examined by photodegradation of methylene blue in an aqueous solution under visible light irradiation. The activity of the S,I-codoped catalyst is far superior to that of single S or I-doped TiO2 counterpart. The high visible light photocatalytic activity could be attributed to the strong absorption of light, well-crystalline anatase phase, and mesoporous microstructure.  相似文献   

11.
Charge carriers photoinduced in poly(3-dodecylthiophene)/([6,6]-phenyl-C61-butanoic acid methyl ester) (P3DDT/PCBM) by photons with the energy of 1.88–2.75 eV were investigated by X-band light-induced electron paramagnetic resonance (LEPR). LEPR spectra were attributed to non-interacting polarons and methanofullerene anion radicals with different magnetic and relaxation parameters. A part of these charge carriers are trapped in a polymer matrix. Paramagnetic susceptibility and spin–spin relaxation of mobile charge carriers were shown to follow the activation law.  相似文献   

12.
Low-temperature preparation of anatase titania-coated magnetite   总被引:1,自引:0,他引:1  
A composite photocatalyst with an anatase titania shell and a magnetite core was prepared in a novel way at low temperature (75 °C at most) by coating photoactive titanium dioxide onto a magnetic Fe3O4 core. The photocatalytic activity of the prepared photocatalyst was evaluated by the degradation of model contaminated water of phenol and compared to single-phase titania (either Degussa P25 or prepared titania without magnetic Fe3O4). The results showed that the photoactivity was slightly depressed. Then, a remarkable improvement in photoactivity was achieved by modifying the photocatalyst with a SiO2 layer between the Fe3O4 core and TiO2 shell. The repetitive using of the modified photocatalyst was also investigated, and experimental results illustrated that the photocatalytic-degraded ratio of phenol was still higher than 80% after six cycles.  相似文献   

13.
In order to study the effect of the TiO2 particle crystalline composition (with different proportions of rutile and anatase crystals) on the dielectric properties of the composite, titanium dioxide (TiO2) particles and TiO2/poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐TrFE)] composites were synthesized by a reflux method and the solution route, respectively. The results indicated that the optimum TiO2 particle crystalline composition is anatase content of 37% and rutile content of 63% for dielectric‐constant modifier applications. Furthermore, a dielectric constant of 25.7 with dielectric loss of 0.17 at 100 Hz at room temperature were obtained in the composite with 40 wt% TiO2 particles. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Jin-Ho Yoon  Jung-Sik Kim 《Ionics》2010,16(2):131-135
The present study examined the photocatalytic reaction of titanium dioxide (TiO2)-coated, phosphor composite particles. Nanocrystalline TiO2 layers were directly coated on the alkaline earth aluminate phosphor (CaAl2O4:Eu2+,Nd3+) particles by a sol-gel processing method and their photocatalytic reaction was analyzed according to the degradation of methylene blue aqueous solution under visible light irradiation. Compared with pure TiO2, the TiO2-coated phosphor powders showed a different photocatalytic mechanism and much faster photocatalytic reactivity under visible irradiation than that of pure TiO2, which was almost negligible. The mechanism of the photocatalytic reactivity for the TiO2-phosphor composite was discussed in terms of the energy band structure and phosphorescence. In addition, the TiO2-coated phosphor powders were characterized by X-ray diffraction and transmission electron microscopy.  相似文献   

15.
This article reports on titanium dioxide (TiO2)-coated nanofibers deposited on a filter surface by the electrospinning process. After depositing a micrometer-thick film of polyamide 11 nanofibers on polypropylene fabric, TiO2 nanoparticles can be directly electrosprayed onto the nanofibers. X-ray diffraction and Raman spectroscopy showed minimal change in the phase composition (anatase and rutile) and no change in the particle size of nanocrystalline TiO2 after coating. Scanning electron microscopy demonstrated that nanofibers were uniformly coated by titanium dioxide nanoparticles without agglomeration. TiO2-coated filters showed excellent photocatalytic-bactericidal activity and photo-induced hydrophilicity.  相似文献   

16.
A hydrothermal treatment of titanium dioxide (TiO2) with various bases (i.e., LiOH, NaOH, KOH, and NH4OH) was used to prepare materials with unique morphologies, relatively small crystallite sizes, and large specific surface areas. The experimental results show that the formation of TiO2 is largely dependent on the type, strength and concentration of a base. The effect of the nature of the base used and the concentration of the base on the formation of nanostructures were investigated using X-ray diffraction, Raman spectroscopy, transmission and scanning electron microscopy, as well as surface area measurements. Sodium hydroxide (NaOH) and potassium hydroxide (KOH) were both used to transform the morphology of starting TiO2 material.  相似文献   

17.
Macroporous nanocrystalline (Sr,Pb)TiO3 solid solutions were prepared by a facile self-propagating combustion method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectrum (EDS) and X-ray photoelectron spectroscopy (XPS). (Sr,Pb)TiO3 solid solutions showed enhanced photocatalytic activity for the degradation of methyl orange (MO) than pure SrTiO3 and an optimum performance was observed for Sr29/32Pb3/32TiO3. The possible mechanism for the enhanced photocatalytic activity on (Sr,Pb)TiO3 solid solutions was proposed.  相似文献   

18.
Photocatalytic active titanium dioxide (TiO2)/zinc oxide (ZnO) composite was prepared by homogeneous hydrolysis of a mixture of titanium oxo-sulphate and zinc sulphate in aqueous solutions with thioacetamide and subsequent annealing at the temperature of 600 °C. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission microscopy (HRTEM). Nitrogen adsorption-desorption was used for surface area (Brunauer-Emmett-Teller—BET) and porosity determination. The photoactivity of the prepared TiO2/ZnO samples was assessed by the photocatalytic decomposition of Orange II dye in an aqueous slurry under irradiation of 254 and 365 nm wavelengths. Under the same conditions, the photocatalytic activity of a commercially available photocatalyst (Degussa P25), the pure anatase TiO2 nanoparticles and cubic ZnO were examined.  相似文献   

19.
Polyacrylonitrile (PAN)/β-cyclodextrin (β-CD) composite nanofibrous membranes immobilized with nano-titanium dioxide (TiO2) and graphene oxide (GO) were prepared by electrospinning and ultrasonic-assisted electrospinning. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD) confirmed that TiO2 and GO were more evenly dispersed on the surface and inside of the nanofibers after 45 min of ultrasonic treatment. Adding TiO2 and GO reduced the fiber diameter; the minimum fiber diameter was 84.66 ± 40.58 nm when the mass ratio of TiO2-to-GO was 8:2 (PAN/β-CD nanofibrous membranes was 191.10 ± 45.66 nm). Using the anionic dye methyl orange (MO) and the cationic dye methylene blue (MB) as pollutant models, the photocatalytic activity of the nanofibrous membrane under natural sunlight was evaluated. It was found that PAN/β-CD/TiO2/GO composite nanofibrous membrane with an 8:2 mass ratio of TiO2-to-GO exhibited the best degradation efficiency for the dyes. The degradation efficiency for MB and MO were 93.52 ± 1.83% and 90.92 ± 1.52%, respectively. Meanwhile, the PAN/β-CD/TiO2/GO composite nanofibrous membrane also displayed good antibacterial properties and the degradation efficiency for MB and MO remained above 80% after 3 cycles. In general, the PAN/β-CD/TiO2/GO nanofibrous membrane is eco-friendly, reusable, and has great potential for the removal of dyes from industrial wastewaters.  相似文献   

20.
Nanometer-scale TiO2 particles have been synthesized by sol-gel method. It was incorporated in a glass-based silica aerogel. The composite was characterized by various techniques such as particle size analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and photoluminescence (PL). The bulk glass presents a strong luminescence at wavelengths ranging from 750 to 950 nm. This PL was attributed to various non-bridging oxygen hole centers (NBOHCs) defects resulting from thermal treatment and crystallization of TiO2 at the interface between titania nanoparticles and silica host matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号