首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, a new (E)‐rich‐enyne π‐conjugated polymer containing a carbazole was designed and synthesized. Two different synthesis methods of poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene‐(E)‐vinylene] (PCZEV) have been prepared from 3,6‐diethynyl‐9(2‐ethylhexyl)carbazole by using the palladium‐carbene‐catalyzed reaction and/or by using the organolanthanide‐catalyzed reaction leading to well‐defined polymer, and their general properties were studied. Compared to poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene] (PCE), the UV‐vis absorption and photoluminescence of the PCZEV was red‐shifted, which indicates the extension of conjugation length. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2434–2442, 2009  相似文献   

2.
A method involving the Diels–Alder (DA) cycloaddition of diacenaphtheno[1,2‐b;1′,2′‐d]thiophenes (DATs) with N‐alkylacenaphthylene‐5,6‐dicarboximides (AIs) was developed to synthesize decacyclene monoimides (DCMIs). The reactions generate the corresponding 1:2 adducts (BAIAs) as major products together with 1:1 adducts (the DCMIs). The molecular structure of BAIAb (N‐octyl derivative) was unambiguously assigned as the bis‐adduct having an endo,endo spatial disposition of the two acenaphthylene‐5,6‐dicarboximide moieties by using X‐ray crystallographic analysis. Relative to the absorption spectrum of decacyclene triimide (DCTIa, N‐2‐ethylhexyl derivative), that of the analogous N‐2‐ethylhexyl‐substituted monoadduct, DCMIa, is bathochromically shifted despite the fact that it possesses a less delocalized π‐electron system. DCMIa does not fluoresce in various organic solvents, whereas DCTIa emits yellow fluorescence in CH2Cl2 with a low quantum yield (ΦSN). Moreover, DCMIa in CDCl3 displays concentration‐dependent 1H NMR spectroscopy behavior, which suggests that it self‐aggregates with an association constant (Ka) of (193±50) m ?1 at 20 °C. Despite the presence of four bulky tert‐butyl groups in DCMIa, its Ka value for aggregate formation is comparable to that of DCTIa [(495±42) m ?1], which does not contain tert‐butyl substituents. Spectroscopic studies with the bis‐adduct BAIAa (N‐2‐ethylhexyl derivative) show that it displays remarkable solvatofluorochromism corresponding to an emission maximum shift (ΔλEM) of 100 nm. The results of density functional theory calculations on BAIAc (N‐methyl derivative) demonstrate that a considerable spatial separation exists between the HOMO and LUMO coefficient distributions, which indicates that the ground‐to‐excited state transition of the novel three‐dimensional acceptor–donor–acceptor BAIAa system should have intramolecular charge‐transfer character.  相似文献   

3.
Hyperbranched organic–inorganic hybrid conjugated polymers P1 and P2 were prepared via FeCl3‐oxiditive polymerization of 4,7‐bis(3‐ethylhexyl‐2‐thienyl)‐2,1,3‐benzothiadiazole ( A ) and octa(3‐ethylhexyl‐2‐thienyl‐phenyl)polyhedral oligomeric silsesquioxane (POSS) ( B ) at different POSS concentrations. Compared to linear polymer PM derived from A , P1 , and P2 exhibit much higher PL quantum efficiency (?PL‐f) in condensed state with improved thermal stability. ?PL‐f of P1 and P2 increased by 80% and 400%, and the thermal degradation temperatures of P1 and P2 are increased by 35 °C and 46 °C, respectively. Light‐emitting diodes were fabricated using P1 , P2 , and PM . While the electroluminescent spectra of both P1 and PM show λmax at 660 nm, P1 exhibits a much narrower EL spectrum and higher electroluminescence (~500%) compared with PM at a same voltage and film thickness. The maximum current efficiency of P1 is more than seven times of that of PM . The turn‐on voltages of the LEDs are in the order of P2 > PM > P1 . LED prepared by blending P1 with MEH‐PPV shows a maximum luminescence of 2.6 × 103 cd/m2 and a current efficiency of 1.40 cd/A, which are more than twice (1.1 × 103 cd/m2) and five times (0.27 cd/A) of LED of PM /MEH‐PPV blend, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5661–5670, 2009  相似文献   

4.
New ether dimer (ED‐Eh) and diester (EHDE) derivatives of α‐(hydroxymethyl)acrylate, each having two 2‐ethylhexyl side chains, and an amine‐linked di(2‐ethylhexyl)acrylate (AL‐Eh), having three 2‐ethylhexyl side chains, were synthesized and (co)polymerized to evaluate the effects of differences in the structures of the monomers on final (co)polymer properties, particularly glass transition temperature, Tg. The free radical polymerizations of these monomers yielded high‐molecular–weight polymers. Cyclopolymer formation of ED‐Eh and AL‐Eh was confirmed by 13C NMR analysis and the cyclization efficiencies were found to be very high (~100%). Copolymers of ED‐Eh, EHDE, and AL‐Eh with methyl methacrylate (MMA) showed significant Tg decreases over poly(methyl methacrylate) (PMMA) due to 2‐ethylhexyl side groups causing “internal” plasticization. Comparison of the Tg's of the copolymers of 2‐ethylhexyl methacrylate, ED‐Eh, EHDE, and AL‐Eh with MMA revealed that the impacts of these monomers on depression of Tg's are identical with respect to the total concentration of the pendent groups. This is consistent with an earlier study involving copolymers of monomers comprising one and two octadecyl side groups with MMA. That is, the magnitude of decrease in Tg's was quantitatively related to the number of the 2‐ethylhexyl pendent groups in the copolymers rather than their placement on the same or randomly incorporated repeat units. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2302–2310, 2010  相似文献   

5.
Factors affecting the syntheses of high‐molecular‐weight poly(2,5‐dialkyl‐1,4‐phenylene vinylene) by the acyclic diene metathesis polymerization of 2,5‐dialkyl‐1,4‐divinylbenzenes [alkyl = n‐octyl ( 2 ) and 2‐ethylhexyl ( 3 )] with a molybdenum or ruthenium catalyst were explored. The polymerizations of 2 by Mo(N‐2,6‐Me2C6H3) (CHMe2 Ph)[OCMe(CF3)2]2 at 25 °C was completed with both a high initial monomer concentration and reduced pressure, affording poly(p‐phenylene vinylene)s with low polydispersity index values (number‐average molecular weight = 3.3–3.65 × 103 by gel permeation chromatography vs polystyrene standards, weight‐average molecular weight/number‐average molecular weight = 1.1–1.2), but the polymerization of 3 was not completed under the same conditions. The synthesis of structurally regular (all‐trans), defect‐free, high‐molecular‐weight 2‐ethylhexyl substituted poly(p‐phenylene vinylene)s [poly 3 ; degree of monomer repeating unit (DPn) = ca. 16–70 by 1H NMR] with unimodal molecular weight distributions (number‐average molecular weight = 8.30–36.3 × 103 by gel permeation chromatography, weight‐average molecular weight/number‐average molecular weight = 1.6–2.1) and with defined polymer chain ends (as a vinyl group, ? CH?CH2) was achieved when Ru(CHPh)(Cl)2(IMesH2)(PCy3) or Ru(CH‐2‐OiPr‐C6H4)(Cl)2(IMesH2) [IMesH2 = 1,3‐bis(2,4,6‐trimethylphenyl)‐2‐imidazolidinylidene] was employed as a catalyst at 50 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6166–6177, 2005  相似文献   

6.
Conductive composites consisted of epoxy resin and polyanilines (PANIs) doped with dodecylbenzenesulfonic acid ( 1 ), dodecylsulfonic acid (2), di(2‐ethylhexyl)sulfosuccinic acid (3), and HCl were synthesized by use of Ntert‐butyl‐5‐methylisoxazolium perchlorate (5) under various reaction conditions. It was found that the composites with PANI doped with acid 2 (PANI‐2) prepared by curing with 10 mol % of reagent 5 at 80 °C for 12 h showed high electroconductivity along with the low conducting percolation threshold (3 wt % of PANI‐2). Furthermore, the composite with even ?10 wt % of PANI‐2 exhibited ?10?1 S/cm of electroconductivity. The UV–vis and IR measurements indicated that the conductive emeraldine salt form of PANI‐2 in the composite was maintained after the curing reaction. The thermal stability was studied by TGA and DSC measurements, and then, the Td10 and Tg of the composite with 5 and 10 wt % of PANI‐2 were found to be similar to those with the cured epoxy resin itself. In addition, the similar investigation with an oxetane resin instead of the epoxy resin was also carried out. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 718–726, 2006  相似文献   

7.
Azidopropyl‐heptaisobutyl‐substituted polyhedral oligomeric silsesquioxane (POSS‐N3) was reacted with 1,1,1‐tris[4‐(2‐propynyloxy)phenyl]‐ethane ( 1 ) and poly(ethylene glycol) (PEG)‐b‐poly(methyl methacrylate) (PMMA) copolymer with alkyne at its center (PEG‐PMMA‐alkyne) affording the first time synthesis of 3‐arm star POSS and PEG‐PMMA‐POSS 3‐miktoarm star terpolymer, respectively, in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as catalyst and N,N‐dimethylformamide/tetrahydrofuran as solvent at room temperature. The precursors and the target star polymers were characterized comprehensively by 1H NMR, GPC, and DSC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5947–5953, 2009  相似文献   

8.
This investigation reports the atom transfer radical copolymerization (ATRcP) of glycidyl methacrylate (GMA) and 2‐ethylhexyl acrylate (EHA). Poly(glycidyl methacrylate) (PGMA) has easily transformable pendant oxirane group and poly(2‐ethylhexyl acrylate) (PEHA) has very low Tg. They are the important components of coating and adhesive materials. Copolymerization of GMA and EHA was carried out in bulk and in toluene at 70 °C at different molar feed ratios using CuCl as catalyst in combination with 2,2′‐bypyridine (bpy) as well as N,N,N′,N″,N″‐pentamethyl diethylenetriamine (PMDETA) as ligand. The molecular weight (Mn) and the polydispersity index (PDI) of the polymers were determined by GPC analysis. The molar composition of the copolymers was determined by 1H NMR analysis. The reactivity ratios of GMA (r1) and EHA (r2) were determined using Finemann‐Ross and Kelen‐Tudos linearization methods and those had been compared with the literature values for conventional free radical copolymerization. The thermal properties of the copolymers were studied by DSC and TGA analysis. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6526–6533, 2009  相似文献   

9.
7H‐Dibenzo[a,g]carbazole‐substituted polysiloxane (PSX‐[a,g]BCz) has been synthesized by hexachloroplatinate (IV) hydrate polymerization from poly(methylhydrosiloxane) and 7‐ally‐7H‐dibenzo[a,g]carbazole. PSX‐[a,g]BCz composite showed large orientational birefringences because of both large dipole moments and high‐polarizability anisotropies of P‐IP‐DC chromophore associated with the effective conjugation along the polyene. The 50‐μm thick photorefractive material containing 30 wt % 2‐[3‐[(E)‐2(piperidino)‐1‐ethenyl]‐5,5‐dimethyl]‐2‐cyclohexenyliden]malononitrile showed a diffraction efficiency of 51% at 55 V/μm, which corresponded to a Δn of 3.45 × 10?3. PSX‐[a,g]BCz composite shows a fast time constant of 0.42 s at 34 °C and 55 V/μm, which corresponded to the space‐charge field of 12 V/μm under 70 V/μm. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1783–1791, 2008  相似文献   

10.
A new azide‐functionalized xanthate, S‐(4‐azidomethylbenzyl) O‐(2‐methoxyethyl) xanthate, was synthesized and used to mediate the reversible addition fragmentation chain transfer polymerization of vinyl acetate. The polymerization was demonstrated to be controlled, and well‐defined PVAc with α‐azide, ω‐xanthate groups were obtained, the xanthate groups of which were further removed by radical‐induced reduction with lauroyl peroxide in the presence of excess 2‐propanol. Hydrolysis of α‐azide‐terminated PVAc (N3‐PVAc) led to the formation of the corresponding α‐azide‐terminated PVA (N3‐PVA). Finally, end‐modification of N3‐PVA by click chemistry with alkyne‐end‐capped poly(caprolactone) (A‐PCL), alkynyl‐mannose, and alkynyl‐pyrene was carried out to obtain a new block copolymer PCL‐b‐PVA, and two PVA with mannose or pyrene as the end functional groups. The polymers were characterized by gel permeation chromatography, 1H NMR spectroscopy, and FTIR. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4494–4504, 2009  相似文献   

11.
A strategy of the fine‐tuning of the degree of intrachain charge transfer and aromaticity of polymer backbone was adopted to design and synthesize new polymers applicable in photovoltaics. Three conjugated polymers P1 , P2 , and P3 were synthesized by alternating the electron‐donating dithieno[3,2‐b:2′3′‐d]pyrrole (D) and three different electron‐accepting (A) segments ( P1 : N‐(2‐ethylhexyl)phthalimide; P2 : 1,4‐diketo‐3,6‐diphenylpyrrolo[3,4‐c]pyrrole; and P3 : thiophene‐3‐hexyl formate) in the polymer main chain. Among the three polymers, P2 possessed the broadest absorption band ranging from 300 to 760 nm, the lowest bandgap (1.63 eV), and enough low HOMO energy level (?5.27 eV) because of the strong intrachain charge transfer from D to A units and the appropriate extent of quinoid state in the main chain of P2 , which was convinced by the theoretical simulation of molecular geometry and front orbits. Photovoltaic study of solar cells based on the blends of P1 – P3 and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) demonstrated that P2 :PCBM exhibited the best performance: a power conversion efficiency of 1.22% with a high open‐circuit voltage (VOC) of 0.70 V and a large short‐circuit current (ISC) of 5.02 mA/cm2 were achieved. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
The synthesis of new random poly(arylene‐vinylene)s containing the electron withdrawing 3,7‐dibenzothiophene‐5,5‐dioxide unit was achieved by the Suzuki–Heck cascade polymerization reaction. The properties of poly[9,9‐bis(2‐ethylhexyl)‐2,7‐fluorenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P1 ) and poly[1,4‐bis(2‐ethylhexyloxy)‐2,5‐phenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P2 ) were compared with those of terpolymers obtained by combining the fluorene, dibenzothiophene, and 1,4‐bis(2‐ethylexyloxy)benzene in 20/40/40 ( P3 ), 50/25/25 ( P4 ), and 80/10/10 ( P5 ) molar ratios. The polymers were characterized by 1H NMR and IR, whereas their thermal properties were investigated by TGA and DSC. Polymers P1–5 are blue–green emitters in solution (λem between 481 and 521 nm) whereas a profound red shift observed in the solid state is emission (λem from 578 to 608 nm) that can be attributed both to the charge transfer stabilization exerted by the polar medium and to intermolecular interactions occurring in the solid state. Cyclic voltammetry permitted the evaluation of the ionization potentials and also revealed a quasi‐reversible behavior in the reduction scans for the polymers ( P1–4 ) containing the higher amounts of 3,7‐dibenzothiophene‐5,5‐dioxide units. Electroluminescent devices with both ITO/PEDOT‐PSS/ P1–5 /Ca/Al (Type I) and ITO/PEDOT‐PSS/ P1–5 /Alq3/Ca/Al (Type II) configuration were fabricated showing a yellow to yellow–green emission. In the case of P4 , a luminance of 1835 cd/m2 and an efficiency of 0.25 cd/A at 14 V were obtained for the Type II devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2093–2104, 2009  相似文献   

13.
Methoxy‐substituted poly(triphenylamine)s, poly‐4‐methoxytriphenylamine ( PMOTPA ), and poly‐N,N‐bis(4‐methoxyphenyl)‐N′,N′‐diphenyl‐p‐phenylenediamine ( PMOPD ), were synthesized from the nickel‐catalyzed Yamamoto and oxidative coupling reaction with FeCl3. All synthesized polymers could be well characterized by 1H and 13C NMR spectroscopy. These polymers possess good solubility in common organic solvent, thermal stability with relatively high glass‐transition temperatures (Tgs) in the range of 152–273 °C, 10% weight‐loss temperature in excess of 480 °C, and char yield at 800 °C higher than 79% under a nitrogen atmosphere. They were amorphous and showed bluish green light (430–487 nm) fluorescence with quantum efficiency up to 45–62% in NMP solution. The hole‐transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. All polymers exhibited reversible oxidation redox peaks and Eonset around 0.44–0.69 V versus Ag/AgCl and electrochromic characteristics with a color change under various applied potentials. The series of PMOTPA and PMOPD also showed p‐type characteristics, and the estimated hole mobility of O ‐ PMOTPA and Y ‐ PMOPD were up to 1.5 × 10?4 and 5.6 × 10?5 cm2 V?1 s?1, respectively. The FET results indicate that the molecular weight, annealing temperature, and polymer structure could crucially affect the charge transporting ability. This study suggests that triphenylamine‐containing conjugated polymer is a multifunctional material for various optoelectronic device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4037–4050, 2009  相似文献   

14.
In this article, pendent thiophene (2‐butyl‐5‐octylthiophene) side chain is used to modify the backbone of the polymers containing benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD). Compared with the dodecyloxy side‐chained polymer (P1), pendent thiophene‐based polymers (P2 and P3) show similar number‐average molecular weight (Mn), polydispersity index, thermal stability (Td ~ 334–337 °C), and optical band gaps ( ) (~1.8 eV). Polymer (P2)‐based BDT with pendent thiophene and ethylhexyl‐modified TPD shows relatively low‐lying HOMO energy level (?5.52 eV) and nearly 1 V high open circuit voltage (VOC). The polymer solar cell devices based on three copolymers show power conversion efficiencies from 2.01% to 4.13%. The hole mobility of these polymers tested by space charge limited current method range from 3.4 × 10?4 to 9.2 × 10?4 cm2V?1s?1. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1558–1566  相似文献   

15.
The syntheses and characterization of poly((2,6‐(4,4‐bis(4‐((2‐ethylhexyl)oxy)phenyl)‐4H‐cyclopenta[def]phenanthrene))‐co‐(2,6‐(4,4‐bis(4‐(((9‐carbazolyl)hexyl)oxy)phenyl))‐4H‐cyclopenta[def]phenanthrene)) (BCzPh‐PCPPs) and poly((2,6‐(4,4‐bis(4‐((2‐ethylhexyl)oxy)phenyl)‐4H‐cyclopenta[def]phenanthrene))‐co‐(2,6‐(4‐(4‐(((9‐carbazolyl)hexyl)oxy)phenyl)‐4‐(4‐((2‐ethylhexyl)oxy)phenyl)‐4H‐cyclopenta[def]phenanthrene))) (CzPh‐PCPPs), with carbazole unit as pendants, are presented. The carbazole moiety, which can improve the hole injection ability, was introduced as a pendant on the PCPP backbone. The devices of the polymers with the configurations of ITO/PEDOT:PSS/polymers/Ca/Al generate EL emission with maximum peaks at 400–450 nm, CIE coordinates of (x = 0.11–0.29, y = 0.11–0.33), low turn‐on voltages of 4–6 V, maximum brightness of 60–810 cd/m2, and luminescence efficiencies of 0.04–0.22 cd/A. The PL spectra of CzPh‐PCPPs films did not show any peak at around 550 nm, which corresponds to keto defect or aggregate/excimer formation, even after annealing for 30 h at 150 °C in air. Out of the series, CzPh‐PCPP1 (PCPP derivative with 10% of carbazole moiety as pendant) shows blue emission with the maximum brightness of 810 cd/m2 at 9 V, and the highest luminescence efficiency of 0.22 cd/A at 395 mA/cm2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1327–1342, 2009  相似文献   

16.
A series of side‐chain‐tethered copolymers containing the N‐(2‐ethylhexyl)‐N′‐(thiophene‐3‐yl)‐3,4:9,10‐perylenebis(dicarboximide) (thiophene‐PDI) moieties and 4,4‐diethylhexyl‐cyclopenta[2,1‐b:3,4‐b′]dithiophene unit were synthesized via Grignard metathesis polymerizations. With the incorporation of pendent perylenebis(dicarboximide) (PDI) moieties as acceptor side chains and thiophene as the donor backbone, the copolymers exhibited the intramolecular donor–acceptor characteristic and displayed a panchromatic absorption ranging from 290 to 1100 nm and ideal bandgaps of 1.49 to 1.52 eV. Due to the coplanarity of PDI moieties, the charge separation and transfer process were more effective and enhanced after photoexcitation. When increased the weight ratio of PC61BM:polymer to 3, the Jsc could be raised significantly. The value of bandgap decreased slightly, and both Voc and Jsc showed an upward trend with the increase of molar ratio of thiophene‐PDI unit from 50% (the copolymer P11) to 75% (the copolymer P13). The polymer/PC61BM devices have shown a significant improvement from 0.45 to 1.66% with a judicious modulation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1978–1988  相似文献   

17.
A series of new polyimides (PIs) containing di‐tert‐butyl side groups were synthesized via a polycondensation of 1‐(4‐aminophenoxy)‐4‐(4‐amino‐2‐methylphenyl)‐2,6‐di‐tert‐butylbenzene ( 3 ) with various aromatic tetracarboxylic dianhydrides. The novel unsymmetric PIs exhibited a low dielectric constants (2.78–3.02), low moisture absorption (0.53–1.35%), excellent solubility, and high glass transition temperature (308–450 °C). The PI derived from the new diamine and the very rigid naphthalene‐1,4,5,8‐tetracarboxylic dianhydride (NTDA) was soluble in N‐methyl‐2‐pyrrolidone, chloroform, m‐cresol, and cyclohexanone. The unsymmetric di‐tert‐butyl pendent groups significantly enhance the rotational barrier of the polymer chains; thus these PIs had high Tgs. The 1H NMR spectrum of the diamine 3 revealed that the protons of 4‐aminophenoxy moiety are not chemical shift equivalent. This is because the steric hindrance of the bulky di‐tert‐butyl groups prevents the benzene ring of 4‐aminophenoxy moiety from rotating freely. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2443–2452, 2009  相似文献   

18.
This investigation reports the preparation of tailor‐made poly(2‐ethylhexyl acrylate) (PEHA) prepared via in situ living radical polymerization in the presence of layered silicates and characterization of this polymer/clay nanocomposite. Being a low Tg (?65 °C) material, PEHA has very good film formation property for which it is used in paints, adhesives, and coating applications. 2‐Ethylhexyl acrylate was polymerized at 90 °C using CuBr and Cu(0) as catalyst in combination with N,N,N′,N″,N″‐pentamethyl diethylenetriamine (PMDETA) as ligand. A tremendous enhancement in reaction rate and polymerization data was achieved when acetone was added as additive to increase the efficiency of the catalyst system. PEHA/clay nanocomposite was prepared at 90 °C using CuBr as catalyst in combination with PMDETA as ligand. Different types of clay with same loading were also used to study the effect on reaction rate. The molecular weight (Mn) and polydispersity index of the prepared nanocomposites were characterized by size exclusion chromatography. The active end group of the polymer chain was analyzed by 1H NMR analysis and by chain extension experiment. Polymer/clay interaction was studied by Fourier Transform Infrared spectrometry and wide‐angle X‐ray diffraction analyses. Distribution of clay in the polymer matrix was studied by the transmission electron microscopy. Thermogravimetric analysis showed that thermal stability of PEHA/clay nanocomposite increases on addition of nanoclay. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The synthesis of multiarm star block (and mixed‐block) copolymers are efficiently prepared by using Cu(I) catalyzed azide‐alkyne click reaction and the arm‐first approach. α‐Silyl protected alkyne polystyrene (α‐silyl‐alkyne‐PS) was prepared by ATRP of styrene (St) and used as macroinitiator in a crosslinking reaction with divinyl benzene to successfully give multiarm star homopolymer with alkyne periphery. Linear azide end‐functionalized poly(ethylene glycol) (PEG‐N3) and poly (tert‐butyl acrylate) (PtBA‐N3) were simply clicked with the multiarm star polymer described earlier to form star block or mixed‐block copolymers in N,N‐dimethyl formamide at room temperature for 24 h. Obtained multiarm star block and mixed‐block copolymers were identified by using 1H NMR, GPC, triple detection‐GPC, atomic force microscopy, and dynamic light scattering measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 99–108, 2010  相似文献   

20.
A negative working and chemically amplified photosensitive polymer has been developed, which is based on poly(2,6‐dihydroxy‐1,5‐naphthalene) (PDHN), the crosslinker 4,4′‐methylenebis[2,6‐bis(hydroxymethyl)]phenol, and the photoacid generator (5‐propylsulfonyloxyimino‐5H‐thiophen‐2‐ylidene)‐(2‐methylphenyl)acetonitrile. PDHN, with a number‐average molecular weight of 25,000, was prepared by the oxidative coupling polymerization of 2,6‐dihydroxynaphthalene with di‐μ‐hydroxo‐bis[(N,N,N′,N′‐tetramethylethylenediamine)copper(II)] chloride in 2‐methoxyethanol at room temperature. The resulting PDHN showed a 5% weight loss temperature of 440 °C in nitrogen and a low dielectric constant of 2.82. The resist showed a sensitivity of 8.3 mJ cm?2 and a contrast of 11 when it was exposed to 436‐nm light, followed by postexposure baking at 100 °C for 5 min and development with a 2.38 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. A fine negative image featuring 10‐μm line‐and‐space patterns was obtained on a film 3 μm thick exposed to 10 mJ cm?2 of ultraviolet light at 436 nm in the contact‐printed mode. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2235–2240, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号