首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
The new poly(arylene vinylene) derivatives, which are composed of biphenylene vinylene phenylene vinylene, biphenylene vinylene m‐phenylene vinylene, terphenylene vinylene phenylene vinylene, and terphenylene vinylene m‐phenylene vinylene as backbone and bulky fluorene pendants at each vinyl bridge, were designed, synthesized, and characterized. The obtained polymers showed weight‐average molecular weights of 11,100–39,800 with polydispersity indexes ranging from 1.5 to 2.1. The resulting polymers were amorphous with high thermal stability and readily soluble in common organic solvents. The obtained polymers showed blue emission (λmax = 456–475 nm) in PL spectra, and polymer 4 containing terphenylene vinylene m‐phenylene vinylene showed the most blue shifted blue emission (λmax = 456 nm). The double layer light‐emitting diode devices fabricated by using obtained polymers as emitter emitted bright blue light. The device showed turn on voltage around 6.5 V and brightness of 70–250 cd/m2. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4923–4931, 2006  相似文献   

2.
A new series of copolymers with high brightness and luminance efficiency were synthesized using the Gilch polymerization method, and their electro‐optical properties were investigated. The weight‐average molecular weights (Mw) and polydispersities of the synthesized poly(9,9‐dioctylfluorenyl‐2,7‐vinylene) [poly(FV)], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [poly(m‐SiPhPV)], and poly[9,9‐di‐n‐octylfluorenyl‐2,7‐vinylene]‐co‐(2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylene vinylene)] [poly(FV‐com‐SiPhPV)] were found to be in the ranges of (8.7–32.6) × 104 and 2.3–5.4, respectively. It was found that the electro‐optical properties of the copolymers could be adjusted by controlling the feed ratios of the comonomers. Thin films of poly(FV), poly(m‐SiPhPV), and poly(FV‐com‐SiPhPV) were found to exhibit photoluminescence quantum yields between 21% and 42%, which are higher than those of MEH‐PPV. Light‐emitting diodes were fabricated in ITO/PEDOT/light‐emitting polymer/cathode configurations using either double layer (LiF/Al) or triple layer (Alq3/LiF/Al) cathode structures. The performance of the polymer light‐emitting diodes (PLEDs) with triple layer cathodes was found to be better than that of the PLEDs with double layer cathodes in poly(FV) and poly(FV‐com‐SiPhPV). The turn‐on voltages of the PLEDs were in the range of 4.5–6.0 V, with maximum brightness and luminance efficiency up to 9691 cd/m2 at 16 V and 3.27 cd/A at 13 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5062–5071, 2005  相似文献   

3.
The presence of cis‐vinylene bonds in Gilch‐polymerized poly[2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylene vinylene] is reported. Through fractionation, species with a weight‐average molecular weight of less than 37,000 exhibited an abnormal blueshift of photoluminescence spectra in toluene solutions, and this was attributed to the presence of cis‐vinylene bonds, as verified by NMR spectroscopy. Surprisingly, the fractionated species (~1 wt %) with a weight‐average molecular weight of 5000 were mostly linked by the cis‐vinylene bonds. The concentration decreased with the molecular weight until a molecular weight of 37,000 was reached; at that point, the polymer chains contained mainly trans‐vinylene bonds. Obviously, the formation of cis‐vinylene bonds strongly inhibited the growth of polymer chains during Gilch polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2520–2526, 2005  相似文献   

4.
The polymerization of bis(4‐ethynylphenyl)methylsilane catalyzed by RhI(PPh3)3 afforded a regio‐ and stereoregular hyperbranched polymer, hb‐poly[(methylsilylene)bis(1,4‐phenylene‐trans‐vinylene)] (poly( 1 )), containing 95% trans‐vinylene moieties. The weight loss of this polymer at 900°C in N2 was 9%. Poly( 1 ) displayed an absorption due to π‐π* transition around 275 nm as a shoulder and a weak absorption around 330 nm due to π‐to‐σ charge transfer, which was hardly seen in the corresponding linear polymer.  相似文献   

5.
Green‐emitting substituted poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)]s ( 6 ) were synthesized via the Wittig–Horner reaction. The polymers were yellow resins with molecular weights of 10,600. The ultraviolet–visible (UV–vis) absorption of 6 (λmax = 332 or 415 nm) was about 30 nm redshifted from that of poly[(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)] ( 2 ) but was only 5 nm redshifted with respect to that of poly[(1,3‐phenylenevinylene)‐alt‐(2,5‐dihexyloxy‐1,4‐phenylenevinylene)] ( 1 ). A comparison of the optical properties of 1 , 2 , and 6 showed that substitution on m‐ or p‐phenylene could slightly affect their energy gap and luminescence efficiency, thereby fine‐tuning the optical properties of the poly[(m‐phenylene vinylene)‐alt‐(p‐phenylene vinylene)] materials. The vibronic structures were assigned with the aid of low‐temperature UV–vis and fluorescence spectroscopy. Light‐emitting‐diode devices with 6 produced a green electroluminescence output (emission λmax ~ 533 nm) with an external quantum efficiency of 0.32%. Substitution at m‐phenylene appeared to be effective in perturbing the charge‐injection process in LED devices. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1820–1829, 2004  相似文献   

6.
The synthesis of new random poly(arylene‐vinylene)s containing the electron withdrawing 3,7‐dibenzothiophene‐5,5‐dioxide unit was achieved by the Suzuki–Heck cascade polymerization reaction. The properties of poly[9,9‐bis(2‐ethylhexyl)‐2,7‐fluorenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P1 ) and poly[1,4‐bis(2‐ethylhexyloxy)‐2,5‐phenylene‐vinylene‐co‐3,7‐dibenzothiophene‐5,5‐dioxide‐vinylene] (50/50 mol/mol, P2 ) were compared with those of terpolymers obtained by combining the fluorene, dibenzothiophene, and 1,4‐bis(2‐ethylexyloxy)benzene in 20/40/40 ( P3 ), 50/25/25 ( P4 ), and 80/10/10 ( P5 ) molar ratios. The polymers were characterized by 1H NMR and IR, whereas their thermal properties were investigated by TGA and DSC. Polymers P1–5 are blue–green emitters in solution (λem between 481 and 521 nm) whereas a profound red shift observed in the solid state is emission (λem from 578 to 608 nm) that can be attributed both to the charge transfer stabilization exerted by the polar medium and to intermolecular interactions occurring in the solid state. Cyclic voltammetry permitted the evaluation of the ionization potentials and also revealed a quasi‐reversible behavior in the reduction scans for the polymers ( P1–4 ) containing the higher amounts of 3,7‐dibenzothiophene‐5,5‐dioxide units. Electroluminescent devices with both ITO/PEDOT‐PSS/ P1–5 /Ca/Al (Type I) and ITO/PEDOT‐PSS/ P1–5 /Alq3/Ca/Al (Type II) configuration were fabricated showing a yellow to yellow–green emission. In the case of P4 , a luminance of 1835 cd/m2 and an efficiency of 0.25 cd/A at 14 V were obtained for the Type II devices. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2093–2104, 2009  相似文献   

7.
The ring‐opening metathesis polymerization (ROMP) of norbornenes containing acetyl‐protected glucose [2,3,4,6‐tetra‐O‐acetyl‐glucos‐1‐O‐yl 5‐norbornene‐2‐carboxylate ( 1 )] and maltose [2,3,6,2′,3′,4′,6′‐hepta‐O‐acetyl‐maltos‐1‐O‐yl 5‐norbornene‐2‐carboxylate ( 2 )] was explored in the presence of Mo(N‐2,6‐iPr2C6H3)(CHCMe2Ph)(OtBu)2 ( A ), Ru(CHPh)(Cl)2(PCy3)2 ( B ; Cy = cyclohexyl), and Ru(CHPh)(Cl)2(IMesH2)(PCy3) ( C ; IMesH2 = 1,3‐dimesityl‐4,5‐dihydromidazol‐2‐ylidene). The polymerizations promoted by B and A proceeded in a living fashion with exclusive initiation efficiency, and the resultant polymers possessed number‐average molecular weights that were very close to those calculated on the basis of the monomer/initiator molar ratios and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.18) in all cases. The observed catalytic activity of B was strongly dependent on both the initial monomer concentration and the solvent employed, whereas the polymerization initiated with A was completed efficiently even at low initial monomer concentrations. The polymerization with C also took place efficiently, and even the polymerization with 1000 equiv of 1 was completed within 2 h. First‐order relationships between the propagation rates and the monomer concentrations were observed for all the polymerization runs, and the estimated rate constants at 25 °C increased in the following order: A > C > B . On the basis of these results, we concluded that ROMP with A was more suitable than ROMP with B or C for the efficient and precise preparation of polymers containing carbohydrates. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4248–4265, 2004  相似文献   

8.
Three new conjugated poly(p‐phenylene vinylene) (PPV) derivatives bearing triphenylamine side‐chain through a vinylene bridge, poly(2‐(4′‐(diphenylamino)phenylenevinyl)‐1,4‐phenylene‐vinylene) (DP‐PPV), poly(2‐(3′‐(3″,7″‐dimethyloctyloxy)phenyl)‐1,4‐phenylenevinylene‐alt‐2‐(4′‐ (diphenylamino)phenylenevinyl)‐1,4‐phenylenevinylene) (DODP‐PPV), and poly(2‐(4′‐(diphenylamino)phenylenevinyl)‐1,4‐phenylenevinylene‐co‐2‐(3′,5′‐bis(3″,7″‐dimethyloctyloxy)‐1,4‐phenylenevinylene) (DP‐co‐BD‐PPV), were synthesized according to the Gilch or Wittig method. Among the three polymers, the copolymer DP‐co‐BD‐PPV is soluble in common solvents with good thermal stability with 5% weight loss at temperatures higher than 386°C. The weight‐average molecular weight (Mw) and polydispersity index (PDI) of DP‐co‐BD‐PPV were 1.83 × 105 and 2.33, respectively. The single‐layer polymer light‐emitting diodes (PLEDs) with the configuration of Indium tin oxide (ITO)/poly (3,4‐ethylenedioxythiophene): poly(4‐styrene sulfonate)(PEDOT:PSS)/DP‐co‐BD‐PPV/Ca/Al were fabricated. The PLED emitted yellow‐green light with the turn‐on voltage of ca. 4.9 V, the maximum luminance of ca. 990 cd/m2 at 15.8 V, and the maximum electroluminescence (EL) efficiency of 0.22 cd/A. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A series of new phenothiazylene vinylene‐based semiconducting polymers, poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene] ( P1 ), poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene‐alt‐1,4‐phenylene vinylene] ( P2 ), and poly[3,7‐(4′‐dodecyloxyphenyl)phenothiazylene vinylene‐alt‐2,5‐thienylene vinylene] ( P3 ), have been synthesized via a Horner‐Emmons reaction. FTIR and 1H NMR spectroscopies confirmed that the configurations of the vinylene groups in the polymers were alltrans (E). The weight‐averaged molecular weights (Mw) of P1 , P2 , and P3 were found to be 27,000, 22,000, and 29,000, with polydispersity indices of 1.91, 2.05, and 2.25, respectively. The thermograms for P1 , P2 , and P3 each contained only a broad glass transition, at 129, 167, and 155 °C, respectively, without the observation of melting features. UV–visible absorption spectra of the polymers showed two strong absorption bands in the ranges 315–370 nm and 450–500 nm, which arose from absorptions of the phenothiazine segments and the conjugated main chains. Solution‐processed field‐effect transistors fabricated from these polymers showed p‐type organic thin‐film transistor characteristics. The field‐effect mobilities of P1 , P2 , and P3 were measured to be 1.0 × 10?4, 3.6 × 10?5, and 1.0 × 10?3 cm2 V?1 s?1, respectively, and the on/off ratios were in the order of 102 for P1 and P2 , and 103 for P3 . Atomic force microscopy and X‐ray diffraction analysis of thin films of the polymers show that they have amorphous structures. A photovoltaic device in which a P3 /PC71BM (1/5) blend film was used as the active layer exhibited an open‐circuit voltage (VOC) of 0.42 V, a short circuit current (JSC) of 5.17 mA cm?2, a fill factor of 0.35, and a power conversion efficiency of 0.76% under AM 1.5 G (100 mW cm?2) illumination. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 635–646, 2010  相似文献   

10.
Poly[(2‐alkyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,3‐phenylenevinylene)]s ( 8 ) and poly[(2‐alkyloxy‐5‐methyl‐1,3‐phenylenevinylene)‐alt‐(1,4‐phenylenevinylene)]s ( 10 ) were synthesized by the Wittig reaction to provide materials containing 45–62% cis‐vinylene bonds. The optical characteristics of 8 and 10 were compared with those of their respective isomers, 3 and 4 , the cis‐vinylene contents of which were significantly lower (9–16%). Although a greater fraction of cis‐CH?CH linkages caused the absorption maximum (λmax) of 8 and 10 to be slightly blueshifted (by ~3–6 nm) from that of 3 and 4 , the impact of the vinylene bond geometry appeared to be negligible on their fluorescence spectra. The fluorescence quantum efficiencies of 8 and 10 were estimated to be approximately 0.25 and 0.72, respectively. Both 8 (λmax ≈ 445 or 462 nm) and 10 (λmax ≈ 480 or 506 nm) were electroluminescent, showing effective color tuning by the controlled insertion of m‐phenylene moieties. The external electroluminescence quantum efficiencies were determined to be 4.26 × 10?3% for 8 and 0.63% for 10 . The cis/trans‐vinylene bond ratio had a great impact on the electroluminescence device performance of 8 but a much smaller impact on the performance of 10 . © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 303–316, 2004  相似文献   

11.
High molecular weight trans‐poly(9,9‐di‐n‐octylfluorene‐2,7‐vinylene) was prepared under reduced pressure in the presence of a well‐defined Schrock‐type catalyst, Mo(CHCMe2Ph)(N‐2,6‐Me2C6H3)[OCMe(CF3)2]2, in toluene. The effect of initial monomer concentration was found to be an important factor for preparing high molecular weight polymers with unimodal molecular weight distributions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2463–2470, 2001  相似文献   

12.
A soluble cyano‐substituted poly[(1,3‐phenylene vinylene)‐alt‐(1,4‐phenylene vinylene)] derivative ( 9 ) was synthesized and characterized. Comparison between 9 and its model compound ( 10 ) showed that the chromophore in 9 remained to be well defined as a result of a π‐conjugation interruption at adjacent m‐phenylene units. The attachment of a cyano substituent only at the β position of the vinylene allowed the maximum electronic impact of the cyano group on the optical properties of the poly(p‐phenylene vinylene) material. At a low temperature (?108 or ?198 °C), the vibronic structures of 9 and 10 were partially resolved. The absorption and emission spectra of a film of 9 were less temperature‐dependent than those of a film of 10 , indicating that the former had a lower tendency to aggregate. A light‐emitting diode (LED) based on 9 emitted yellow light (λmax ≈ 578 nm) with an external quantum efficiency of 0.03%. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3149–3158, 2003  相似文献   

13.
In the present study, a new (E)‐rich‐enyne π‐conjugated polymer containing a carbazole was designed and synthesized. Two different synthesis methods of poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene‐(E)‐vinylene] (PCZEV) have been prepared from 3,6‐diethynyl‐9(2‐ethylhexyl)carbazole by using the palladium‐carbene‐catalyzed reaction and/or by using the organolanthanide‐catalyzed reaction leading to well‐defined polymer, and their general properties were studied. Compared to poly[N‐(2‐ethylhexyl)‐3,6‐carbazolyleneethynylene] (PCE), the UV‐vis absorption and photoluminescence of the PCZEV was red‐shifted, which indicates the extension of conjugation length. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2434–2442, 2009  相似文献   

14.
A novel synthetic method for soluble precursor polymers of poly(p‐phenylene vinylene) (PPV) derivatives by the palladium‐catalyzed three‐component coupling polycondensation of aromatic diiodides, aromatic bis(boronic acid) derivatives, and norbornadiene is described. For example, the polymerization of 1,4‐diiodo‐2,5‐dioctyloxybenzene, benzene‐1,4‐bis(boronic acid propanediol ester), and norbornadiene at 100 °C for 3 days provided a polymer consisting of the three monomer units in a 97% yield (number‐average molecular weight = 3100, weight‐average molecular weight/number‐average molecular weight = 1.37). A derivative of PPV was produced smoothly by the retro Diels–Alder reaction of the polymer both in a dodecyloxybenzene solution and in a film at 200 °C in vacuo. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3403–3410, 2005  相似文献   

15.
Summary: A novel poly(p‐phenylene vinylene) (PPV)/poly(p‐phenylene ethynylene) (PPE) block‐copolymer was synthesized by a cross‐coupling polycondensation with Pd(PPh3)2Cl2 and a phase‐transfer catalyst, and was confirmed by 1H NMR and IR spectroscopy and elemental analysis. The thermal, electrochemical, and photoluminescent properties of the new copolymer have been investigated. The incorporation of triple bonds into the cyano‐substituted PPV (CN‐PPV) backbone leads to higher oxidation and reduction potentials than poly(2‐methoxy‐5‐(2‐ethylhexyloxy)‐p‐phenylene vinylene) (MEH‐PPV) and CN‐PPV, potentially making the copolymer a good electron‐transporting material for use in a light‐emitting‐diode device.

The cyclic voltammogram of the novel poly(p‐phenylene vinylene) (PPV)/poly(p‐phenylene ethynylene) (PPE) block‐copolymer synthesized here.  相似文献   


16.
A phenylenevinylene‐thiophene‐phenyleneethynylene copolymer, poly{[1′,4′‐bis‐(thienyl‐vinyl)]‐2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene‐vinylene‐alt‐1,4‐dioctyloxyl‐phenyleneethynylene}(PTPPV‐ PPE), was synthesized by the Sonogashira Pd‐catalyzed cross‐coupling reaction. The copolymer possesses higher thermal decomposition temperature (Td = 382°C) compared with poly{[1′,4′‐bis‐ (thienyl‐vinyl)]‐2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene‐vinylene} (PTPPV). The absorption and photoluminescence (PL) peaks of PTPPV‐PPE solution and solid film locate in between those of the homopolymers of PTPPV and poly(1,4‐dioctyloxyl‐phenyleneethynylene) (PPE), and closer to that of PTPPV. Photovoltaic cell was fabricated based on the blend of PTPPV‐PPE and PCBM with a weight ratio of 1:1. The primary result shows an open circuit voltage (Voc) of 0.72 V which is higher than that of the PTPPV (0.67 V), and a power conversion efficiency (PCE) of 0.3% under the illumination of AM1.5, 100 mW/cm2 which is much better than that of PPEs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
3‐Ethyl‐3‐methacryloyloxymethyloxetane (EMO) was easily polymerized by dimethyl 2,2′‐azobisisobutyrate (MAIB) as the radical initiator through the opening of the vinyl group. The initial polymerization rate (Rp) at 50 °C in benzene was given by Rp = k[MAIB]0.55 [EMO]1.2. The overall activation energy of the polymerization was estimated to be 87 kJ/mol. The number‐average molecular weight (M?n) of the resulting poly(EMO)s was in the range of 1–3.3 × 105. The polymerization system was found to involve electron spin resonance (ESR) observable propagating poly(EMO) radicals under practical polymerization conditions. ESR‐determined rate constants of propagation (kp) and termination (kt) at 60 °C are 120 and 2.41 × 105 L/mol s, respectively—much lower than those of the usual methacrylate esters such as methyl methacrylate and glycidyl methacrylate. The radical copolymerization of EMO (M1) with styrene (M2) at 60 °C gave the following copolymerization parameters: r1 = 0.53, r2 = 0.43, Q1 = 0.87, and e1 = +0.42. EMO was also observed to be polymerized by BF3OEt2 as the cationic initiator through the opening of the oxetane ring. The M?n of the resulting polymer was in the range of 650–3100. The cationic polymerization of radically formed poly(EMO) provided a crosslinked polymer showing distinguishably different thermal behaviors from those of the radical and cationic poly(EMO)s. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1269–1279, 2001  相似文献   

18.
A new phosphorus‐containing aromatic diamine, 1,4‐bis(4‐aminophenoxy)‐2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl) phenylene ( 3 ) was synthesized by the nucleophilic aromatic substitution of 2‐(6‐oxido‐6H‐dibenz[c,e] [1,2]oxaphosphorin‐6‐yl)‐1,4‐dihydroxy phenylene ( 1 ) with 4‐fluoronitrobenzene, followed by catalytic hydrogenation. Light color, flexible, and creasable polyimides with high molecular weight, high glass transition, high thermal stability, improved organosolubility, and good oxygen plasma resistance were synthesized from the condensation of ( 3 ) with various aromatic dianhydrides in N,N‐dimethylacetamide, followed by thermal imidization. The number‐average molecular weights of polyimides are in the range of 7.0–8.3 × 104 g/mol, and the weight‐average molecular weights are in the range of 12.5–16.5 × 104 g/mol. The Tgs of these polyimides range from 230 to 304 °C by differential scanning calorimetry and from 228 to 305 °C by DMA. These polyimides are tough and flexible, with tensile strength at around 100 MPa. The degradation temperatures (Td 5%) and char yields at 800 °C in nitrogen range from 544 to 597 °C and 59–65 wt %, respectively. Polyimides 5c and 5e , derived from OPDA and 6FDA, respectively, with the cutoff wavelength of 347 and 342 μm, respectively, show very light color. These polyimides also exhibit good oxygen plasma resistance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2897–2912, 2007  相似文献   

19.
A new poly(arylene vinylene) derivative, poly(1,4‐fluorenylenevinylene), with the advantages of poly(p‐phenylene vinylene) and polyfluorene (PF), was designed, synthesized, and characterized. The polymer showed a defect‐free structure and a number‐average molecular weight of 32,600. The resulting polymer was thermally stable with a high glass‐transition temperature (200 °C) and was readily soluble in common organic solvents. The polymer film showed a maximum emission at 515 nm and had a photoluminescence quantum yield of 58 ± 5%. A cyclic voltammetry study revealed that the highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of the polymer were 2.9 and 5.51 eV, respectively. The double‐layer light‐emitting‐diode devices fabricated from the polymer emitted bright green light with a maximum around 515 nm. The device showed a maximum luminous efficiency of 0.13 cd/A and a maximum luminance value of 600 cd/m2 at 17 V. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6515–6523, 2005  相似文献   

20.
Cationic ring‐opening polymerizations of 5‐alkyl‐ or 5,7‐dialkyl‐1,3‐dehydroadamantanes, such as 5‐hexyl‐ ( 4 ), 5‐octyl‐ ( 5 ), 5‐butyl‐7‐isobutyl‐ ( 6 ), 5‐ethyl‐7‐hexyl‐ ( 7 ), and 5‐butyl‐7‐hexyl‐1,3‐dehydroadamantane ( 8 ), were carried out with super Brønsted acids, such as trifluoromethanesulfonic acid or trifluoromethanesulfonimide in CH2Cl2 or n‐heptane. The ring‐opening polymerizations of inverted carbon–carbon bonds in 4–8 proceeded to afford corresponding poly(1,3‐adamantane)s in good to quantitative yields. Poly( 4–8 )s possessing alkyl substituents were soluble in 1,2‐dichlorobenzene, although a nonsubstituted poly(1,3‐adamantane) was not soluble in any organic solvent. In particular, poly( 8 ) exhibited the highest molecular weight at around 7500 g mol?1 and showed excellent solubility in common organic solvents, such as THF, CHCl3, benzene, and hexane. The resulting poly( 4–8 )s containing adamantane‐1,3‐diyl linkages showed good thermal stability, and 10% weight loss temperatures (T10) were observed over 400 °C. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4111–4124  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号