首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoprene is one of the most important non‐methane hydrocarbons (NMHCs) in the troposphere: it is a significant precursor of O3 and it affects the oxidative state of the atmosphere. The diastereoisomeric 2‐methyltetrols, 2‐methylthreitol and 2‐methylerythritol, are marker compounds of the photooxidation products of atmospheric isoprene. In order to obtain valuable information on the δ13C value of isoprene in the atmosphere, the stable carbon isotopic compositions of the 2‐methyltetrols in ambient aerosols were investigated. The 2‐methyltetrols were extracted from filter samples and derivatized with methylboronic acid, and the δ13C values of the methylboronate derivatives were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The δ13C values of the 2‐methyltetrols were then calculated through a simple mass balance equation between the 2‐methyltetrols, methylboronic acid and the methylboronates. The δ13C values of the 2‐methyltetrols in aerosol samples collected at the Changbai Mountain Nature Reserves in eastern China were found to be ?24.66 ± 0.90‰ and ?24.53 ± 1.08‰ for 2‐methylerythritol and 2‐methylthreitol, respectively. Based on the measured isotopic composition of the 2‐methyltetrols, the average δ13C value of atmospheric isoprene is inferred to be close to or slightly heavier than ?24.66‰ at the collection site during the sampling period. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Amino sugars have been used as biomarkers to assess the relative contribution of dead microbial biomass of different functional groups of microorganisms to soil carbon pools. However, little is known about the dynamics of these compounds in soil. The isotopic composition of individual amino sugars can be used as a tool to determine the turnover of these compounds. Methods to determine the δ13C of amino sugars using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) have been proposed in literature. However, due to derivatization, the uncertainty on the obtained δ13C is too high to be used for natural abundance studies. Therefore, a new high‐performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) methodology, with increased accuracy and precision, has been developed. The repeatability on the obtained δ13C values when pure amino sugars were analyzed were not significantly concentration‐dependent as long as the injected amount was higher than 1.5 nmol. The δ13C value of the same amino sugar spiked to a soil deviated by only 0.3‰ from the theoretical value. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Through simulation experiments of atmospheric sampling, a method via 2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to measure the carbon isotopic composition of atmospheric acetone. Using acetone and a DNPH reagent of known carbon isotopic compositions, the simulation experiments were performed to show that no carbon isotope fractionation occurred during the processes: the differences between the predicted and measured data of acetone-DNPH derivatives were all less than 0.5 per thousand. The results permitted the calculation of the carbon isotopic compositions of atmospheric acetone using a mass balance equation. In this method, the atmospheric acetone was collected by a DNPH-coated silica cartridge, washed out as acetone-DNPH derivatives, and then analyzed by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using this method, the first available delta13C data of atmospheric acetone are presented.  相似文献   

4.
Little is known about the delta13C composition of monosaccharides representing the largest carbon reservoir in the biosphere. The main reason for this might be that monosaccharides have to be derivatized prior to gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analyses and that a large isotopic correction is necessary for the carbon that has to be added to the original molecule during derivatization, resulting in large uncertainty of the calculated delta13C values of individual monosaccharides. The amount of added derivatization carbon is twice (alditol acetates) or even three times (trimethylsilyl (TMS) derivatives) as high as the amount of the original monosaccharide carbon. In addition, isotope fractionation occurs during acetylation. Therefore, the objectives of this study were (i) to minimize carbon addition during derivatization for GC/C/IRMS measurements of monosaccharides in soil and sediment samples and (ii) to quantify improvements in accuracy and precision of the final results. Minimization of carbon addition was accomplished by derivatization with methylboronic acid (MBA) and TMS thereafter (MBA method). Monosaccharides derivatized with the MBA method instead of TMS reduced the number of added carbon atoms from 2.2-2.7 to 0.3-0.8 per sugar carbon atom. Although the precision of GC/C/IRMS measurements with both methods is comparable (about 0.3 per thousand), delta13C values of an internal standard indicated that the newly developed MBA method is about 2 per thousand more accurate than the TMS method. delta13C comparison between soil samples that differed only slightly in their bulk carbon isotope signature showed that the MBA method is better in proving these small differences on a significant level. Total precision of the whole MBA method including all analytical and calculation steps is better by a factor of almost three than the TMS method.  相似文献   

5.
A novel method has been developed for compound-specific isotope analysis for acetone via DNPH (2,4-dinitrophenylhydrazine) derivatization together with combined gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Acetone reagents were used to assess delta13C fractionation during the DNPH derivatization process. Reduplicate delta13C analyses were designed to evaluate the reproducibility of the derivatization, with an average error (1 standard deviation) of 0.17 +/- 0.05 per thousand, and average analytical error of 0.28 +/- 0.09 per thousand. The derivatization process introduces no isotopic fractionation for acetone (the average difference between the predicted and analytical delta13C values was 0.09 +/- 0.20 per thousand, within the precision limits of the GC/C/IRMS measurements), which permits computation of the delta13C values for the original underivatized acetone through a mass balance equation. Together with further studies of the carbon isotopic effect during the atmospheric acetone-sampling procedure, it will be possible to use DNPH derivatization for carbon isotope analysis of atmospheric acetone.  相似文献   

6.
The natural 13C/12C isotope composition (δ13C) of plants and organic compounds within plant organs is a powerful tool to understand carbon allocation patterns and the regulation of photosynthetic or respiratory metabolism. However, many enzymatic fractionations are currently unknown, thus impeding our understanding of carbon trafficking pathways within plant cells. One of them is the 12C/13C isotope effect associated with invertases (EC 3.2.1.26) that are cornerstone enzymes for Suc metabolism and translocation in plants. Another conundrum of isotopic plant biology is the need to measure accurately the specific δ13C of individual carbohydrates. Here, we examined two complementary methods for measuring the δ13C value of sucrose, glucose and fructose, that is, off‐line high‐performance liquid chromatography (HPLC) purification followed by elemental analysis and isotope ratio mass spectrometry (EA‐IRMS) analysis, and gas chromatography‐combustion (GC‐C)‐IRMS. We also used these methods to determine the in vitro 12C/13C isotope effect associated with the yeast invertase. Our results show that, although providing more variable values than HPLC~EA‐IRMS, and being sensitive to derivatization conditions, the GC‐C‐IRMS method gives reliable results. When applied to the invertase reaction, both methods indicate that the 12C/13C isotope effect is rather small and it is not affected by the use of heavy water (D2O). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Amino sugars in soils have been used as markers of microbial necromass and to determine the relative contribution of bacterial and fungal residues to soil organic matter. However, little is known about the dynamics of amino sugars in soil. This is partly because of a lack of adequate techniques to determine ‘turnover rates’ of amino sugars in soil. We conducted an incubation experiment where 13C‐labeled organic substrates of different quality were added to a sandy soil. The objectives were to evaluate the applicability of compound‐specific stable isotope analysis via gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS) for the determination of 13C amino sugars and to demonstrate amino sugar dynamics in soil. We found total analytical errors between 0.8 and 2.6‰ for the δ13C‐values of the soil amino sugars as a result of the required δ13C‐corrections for isotopic alterations due to derivatization, isotopic fractionation and analytical conditions. Furthermore, the δ13C‐values of internal standards in samples determined via GC‐C‐IRMS deviated considerably from the δ13C‐values of the pure compounds determined via elemental analyzer IRMS (with a variation of 9 to 10‰ between the first and third quartile among all samples). This questions the applicability of GC‐C‐IRMS for soil amino sugar analysis. Liquid chromatography‐combustion‐IRMS (LC‐C‐IRMS) might be a promising alternative since derivatization, one of the main sources of error when using GC‐C‐IRMS, is eliminated from the procedure. The high 13C‐enrichment of the substrate allowed for the detection of very high 13C‐labels in soil amino sugars after 1 week of incubation, while no significant differences in amino sugar concentrations over time and across treatments were observed. This suggests steady‐state conditions upon substrate addition, i.e. amino sugar formation equalled amino sugar decomposition. Furthermore, higher quality substrates seemed to favor the production of fungal‐derived amino sugars. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the δ values of these reference materials should bracket the isotopic range of samples with unknown δ values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW‐SLAP) and carbonates (NBS 19 and L‐SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA‐IRMS). At present only L‐glutamic acids USGS40 and USGS41 satisfy these requirements for δ13C and δ15N, with the limitation that L‐glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on‐line (i.e. continuous flow) hydrogen reductive gas chromatography‐isotope ratio mass‐spectrometry (GC‐IRMS), (ii) five nicotines for oxidative C, N gas chromatography‐combustion‐isotope ratio mass‐spectrometry (GC‐C‐IRMS, or GC‐IRMS), and (iii) also three acetanilide and three urea reference materials for on‐line oxidative EA‐IRMS for C and N. Isotopic off‐line calibration against international stable isotope measurement standards at Indiana University adhered to the ‘principle of identical treatment’. The new reference materials cover the following isotopic ranges: δ2Hnicotine ?162 to ?45‰, δ13Cnicotine ?30.05 to +7.72‰, δ15Nnicotine ?6.03 to +33.62‰; δ15Nacetanilide +1.18 to +40.57‰; δ13Curea ?34.13 to +11.71‰, δ15Nurea +0.26 to +40.61‰ (recommended δ values refer to calibration with NBS 19, L‐SVEC, IAEA‐N‐1, and IAEA‐N‐2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC‐IRMS that are available with different δ15N values. Comparative δ13C and δ15N on‐line EA‐IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA‐IRMS reference materials. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

9.
Gaseous membrane permeation (MP) technologies have been combined with continuous‐flow isotope ratio mass spectrometry for on‐line δ13C measurements. The experimental setup of membrane permeation‐gas chromatography/combustion/isotope ratio mass spectrometry (MP‐GC/C/IRMS) quantitatively traps gas streams in membrane permeation experiments under steady‐state conditions and performs on‐line gas transfer into a GC/C/IRMS system. A commercial polydimethylsiloxane (PDMS) membrane sheet was used for the experiments. Laboratory tests using CO2 demonstrate that the whole process does not fractionate the C isotopes of CO2. Moreover, the δ13C values of CO2 permeated on‐line give the same isotopic results as off‐line static dual‐inlet IRMS δ13C measurements. Formaldehyde generated from aqueous formaldehyde solutions has also been used as the feed gas for permeation experiments and on‐line δ13C determination. The feed‐formaldehyde δ13C value was pre‐determined by sampling the headspace of the thermostated aqueous formaldehyde solution. Comparison of the results obtained by headspace with those from direct aqueous formaldehyde injection confirms that the headspace sampling does not generate isotopic fractionation, but the permeated formaldehyde analyzed on‐line yields a 13C enrichment relative to the feed δ13C value, the isotopic fractionation being 1.0026 ± 0.0003. The δ13C values have been normalized using an adapted two‐point isotopic calibration for δ13C values ranging from ?42 to ?10‰. The MP‐GC/C/IRMS system allows the δ13C determination of formaldehyde without chemical derivatization or additional analytical imprecision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
An inter‐laboratory exercise was carried out by a consortium of five European laboratories to establish a set of compounds, suitable for calibrating gas chromatography/combustion/isotope ratio mass spectrometry (GC‐C‐IRMS) devices, to be used as isotopic reference materials for hydrogen, carbon, nitrogen and oxygen stable isotope measurements. The set of compounds was chosen with the aim of developing a mixture of reference materials to be used in analytical protocols to check for food and beverage authentication. The exercise was organized in several steps to achieve the certification level: the first step consisted of the a priori selection of chemical compounds on the basis of the scientific literature and successive GC tests to set the analytical conditions for each single compound and the mixture. After elimination of the compounds that turned out to be unsuitable in a multi‐compound mixture, some additional oxygen‐ and nitrogen‐containing substances were added to complete the range of calibration isotopes. The results of δ13C determinations for the entire set of reference compounds have previously been published, while the δD and δ18O determinations were unsuccessful and after statistical analysis of the data the results did not reach the level required for certification. In the present paper we present the results of an inter‐laboratory exercise to identify and test the set of nitrogen‐containing compounds present in the mixture developed for use as reference materials for the validation of GC‐C‐IRMS analyses in individual laboratories. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C‐isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques the samples must be derivatized prior to analysis, which makes sample preparation more labour‐intensive and increases the uncertainty of the measured isotopic composition. A novel method for the determination of isotopic enrichment of glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been developed. Using this technique, for which hardly any sample preparation is needed, we showed that both the enrichment and the concentration could be measured with very high precision using only 20 µL of plasma. In addition, a comparison with GC/MS and GC/IRMS showed that the best performance was achieved with the LC/IRMS method making it the method of choice for the measurement of 13C‐isotopic enrichment in plasma samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A reference method to accurately define kinetics in response to the ingestion of glucose in terms of total, exogenous and endogenous glucose is to use stable‐isotope‐labelled compounds such as 2H and 13C glucose followed by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analysis. The use of the usual pentaacetyl (5Ac) derivative generates difficulties in obtaining accurate and reproducible results due to the two chromatographic peaks for the syn and anti isomers, and to the isotopic effect occurring during acetylation. Therefore, the pentaacetylaldononitrile derivative (Aldo) was validated for both isotopes, and compared with the 5Ac derivative. A correction factor including carbon atom dilution (stoichiometric equation) and the kinetic isotopic effect (KIE) was determined. Analytical validation results for the 2H GC/MS and 13C GC/C/IRMS measurements produced acceptable results with both derivatives. When 2H enrichments of plasma samples were ≤1 mol % excess (MPE), the repeatability (RSDAldo Intra assay and Intra day <0.94%, RSD5Ac Intra assay and Intra day <3.29%), accuracy (Aldo <3.4%, 5Ac <29.0%), and stability of the derivatized samples were significantly better when the Aldo derivatives of the plasma samples were used (p < 0.05). When the glucose kinetics were assessed in nine human subjects, after glucose ingestion, the plasma glucose 2H enrichments were identical with both derivatives, whereas the 13C enrichments needed a correction factor to fit together. Due to KIE variation, this correction factor was not constant and had to be calculated for each batch of analyses, to obtain satisfactory results. Mean quantities of exogenous glucose exhibit marked difference (20.9 ± 1.3g (5Ac) vs. 26.7 ± 2.5g (Aldo)) when calculated with stoichiometric correction, but fit perfectly when calculated after application of the correction factor (22.1 ± 1.3g (5Ac) vs. 22.9 ± 1.9g (Aldo)). Finally, the pentaacetylaldononitrile derivative, used here in GC/C/IRMS for the first time, enables measurement of 2H and 13C enrichments in plasma glucose with a single sample preparation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Stable isotope ratios of individual plant components have become a valuable tool for the determination of the geographical origin and authenticity of foodstuff. A recently published method with considerable potential in this context is the measurement of the deuterium/hydrogen (D/H) isotope ratios of plant matter methoxyl groups. The method entailed cleavage of methyl ethers or esters with hydriodic acid (HI) to form gaseous methyl iodide (CH3I) and then measurement of the δ2H value of this gas. Here, as a follow up to a previous study, we describe a method for the rapid and precise δ13C analysis of plant matter methoxyl groups using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Conditions for sample preparation were investigated for isotope discrimination effects, the GC conditions optimized, the reproducibility of the measurement of standards undertaken, and the precision of the method defined. The reproducibility of the δ13C value determined for a CH3I standard on 20 consecutive measurements was found to be 0.17‰. The method was also tested on four methoxyl‐rich plant components: vanillin, lignin, wood and pectin. The analytical precision obtained, expressed as the average standard deviation, for these compounds was found to be better than 0.13‰. The described procedure which is simple and rapid, allowing preparation and analysis of a sample within 1 h, produces accurate and reproducible isotopic measurements. We suggest that this validated δ13C method when employed together with the recently published δ2H method for two‐dimensional stable isotope studies of organic matter containing methoxyl groups will be of considerable value, e.g. for proving the authenticity of foodstuff. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS) is increasingly applied to food and metabolic studies for stable isotope analysis (δ13C), with the quantification of analyte concentration often obtained via a second alternative method. We describe a rapid direct transesterification of triacylglycerides (TAGs) for fatty acid methyl ester (FAME) analysis by GC‐C‐IRMS demonstrating robust simultaneous quantification of amount of analyte (mean r2 = 0.99, accuracy ±2% for 37 FAMEs) and δ13C (±0.13‰) in a single analytical run. The maximum FAME yield and optimal δ13C values are obtained by derivatizing with 10% (v/v) acetyl chloride in methanol for 1 h, while lower levels of acetyl chloride and shorter reaction times skewed the δ13C values by as much as 0.80‰. A Bland‐Altman evaluation of the GC‐C‐IRMS measurements resulted in excellent agreement for pure oils (±0.08‰) and oils extracted from French fries (±0.49‰), demonstrating reliable simultaneous quantification of FAME concentration and δ13C values. Thus, we conclude that for studies requiring both the quantification of analyte and δ13C data, such as authentication or metabolic flux studies, GC‐C‐IRMS can be used as the sole analytical method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Technical modification of the conventional method for the δ13C and δ18O analysis of 10–30 µg carbonate samples is described. The CO2 extraction is carried out in vacuum using 105% phosphoric acid at 95°C, and the isotopic composition of CO2 is measured in a helium flow by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The feed‐motion of samples to the reaction vessel provides sequential dropping of only the samples (without the sample holder) into the acid, preventing the contamination of acid and allowing us to use the same acid to carry out very large numbers of analyses. The high accuracy and high reproducibility of the δ13C and δ18O analyses were demonstrated by measurements of international standards and comparison of results obtained by our method and by the conventional method. Our method allows us to analyze 10 µg of the carbonate with a standard deviation of ±0.05‰ for δ13C and δ18O. The method has been used successfully for the analyses of the oxygen and carbon isotopic composition of the planktonic and benthic foraminifera in detailed palaeotemperature reconstructions of the Okhotsk Sea. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Although gas chromatography–pyrolysis–isotope ratio mass spectrometry (GC‐Py‐IRMS) has allowed us to make online compound‐specific δ18O measurements for about the last ten years, this technique has hardly been applied. We tested different pyrolysis reactor designs using standards (vanillin, ethylvanillin, a fatty acid methyl ester and alkanes) in order to optimize the GC‐Py‐IRMS δ18O measurements. The method was then applied to methylboronic acid (MBA) sugar derivatives (pentoses, 6‐deoxyhexoses and hexoses). Plant‐ and microbial‐derived monosaccharides were extracted hydrolytically from litter and topsoils before derivatization. The measured δ18O values of samples and co‐analyzed reference material were first drift‐corrected by use of regularly discharged pulses of CO reference gas. Secondly, they were corrected for the amount dependence of the δ18O values. Thirdly, the δ18O values were calibrated using the reference material (principle of ‘Identical Treatment’), and, finally, a correction was applied by taking the hydrolytically introduced and water‐exchangeable oxygen atoms into account. Our results suggest that the δ18O values of plant‐derived monosaccharides in litter reflect the climatic conditions of the last year, whereas δ18O values of the respective topsoils reflect the averaged climate signal of the last decades or even centuries. This demonstrates the high potential of the method for palaeoclimate reconstructions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Compound‐specific stable carbon isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) is an important method for the determination of the 13C/12C ratios of biomolecules such as steroids, for a wide range of applications. However, steroids in their natural form exhibit poor chromatographic resolution, while derivatisation adds carbon thereby corrupting the stable isotopic composition. Hydropyrolysis with a sulphided molybdenum catalyst has been shown to defunctionalise the steroids, while leaving their carbon skeleton intact, allowing for the accurate measurement of carbon isotope ratios. The presence of double bonds in unsaturated steroids such as cholesterol resulted in significant rearrangement of the products, but replacing the original catalyst system with one of platinum results in higher conversions and far greater selectivity. The improved chromatographic performance of the products should allow GC/C/IRMS to be applied to more structurally complex steroid hormones and their metabolites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The incorporation of stable isotopes improves the assessment of glucose metabolism and, with some researchers using two tracers, (2)H-glucose assessed by gas chromatography/mass spectrometry (GC/MS) and (13)C-glucose by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), a common derivative for both is advantageous. The most commonly used derivatives for GC/MS are inappropriate for GC/C/IRMS as additional functional groups dilute the label. We therefore considered the suitability of six derivatives for both GC/MS and GC/C/IRMS. Glucose alkylboronates were prepared by adding the appropriate alkylboronic acid (butyl- or methylboronic acid) in pyridine to desiccated glucose. The derivatisation was completed by reacting this with either (a) acetic anhydride or trifluoroacetic anhydride (acetate derivatives) or (b) bis(trimethylsilyl)trifluoroacetamide BSTFA (TMS derivatives). All six derivatives were assessed using GC/MS and (13)C GC/C/IRMS.Neither TMS derivative exhibited any signal intensity in the molecular ion, although a M-15 ion showed good agreement between experimental and theoretical data and, whilst still low in intensity, could be suitable for isotope work. Similarly, none of the acetate derivatives showed any intensity at the molecular ion although three key fragmentation series were identified. The most attractive sequence, initiated by the loss of 1,2 cyclic boronate, resulted in the main fragment ion of interest, m/z 240, corresponding to the fluorinated methylboronate derivate. Minimal carbon and hydrogen atoms are added to this derivative making it an excellent choice for stable isotope work, while proving suitable for analysis by both GC/MS and GC/C/IRMS.  相似文献   

19.
Compound‐specific isotope analysis (CSIA) by liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) has until now been based on ion‐exchange separation. In this work, high‐temperature reversed‐phase liquid chromatography was coupled to, and for the first time carefully evaluated for, isotope ratio mass spectrometry (HT‐LC/IRMS) with four different stationary phases. Under isothermal and temperature gradient conditions, the column bleed of XBridge C18 (up to 180 °C), Acquity C18 (up to 200 °C), Triart C18 (up to 150 °C), and Zirchrom PBD (up to 150 °C) had no influence on the precision and accuracy of δ13C measurements, demonstrating the suitability of these columns for HT‐LC/IRMS analysis. Increasing the temperature during the LC/IRMS analysis of caffeine on two C18 columns was observed to result in shortened analysis time. The detection limit of HT‐RPLC/IRMS obtained for caffeine was 30 mg L–1 (corresponding to 12.4 nmol carbon on‐column). Temperature‐programmed LC/IRMS (i) accomplished complete separation of a mixture of caffeine derivatives and a mixture of phenols and (ii) did not affect the precision and accuracy of δ13C measurements compared with flow injection analysis without a column. With temperature‐programmed LC/IRMS, some compounds that coelute at room temperature could be baseline resolved and analyzed for their individual δ13C values, leading to an important extension of the application range of CSIA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Comparative analysis involves various but complementary methods and can be used for forensic intelligence purposes to group seizures of heroin into batches. Much forensic analysis now combines expertise in the traditional area of drugs investigation with a detailed understanding of supply, packaging, distribution, and drugs intelligence. It was the intention of this research to determine whether illicit heroin seizures and packaging material can be grouped according to isotopic compositions, and to explore factors that affect the isotopic compositions. In order to achieve these aims, 14 samples of seized heroin, thirteen provided by Avon and Somerset Constabulary (UK), were analysed by elemental analysis/isotope ratio mass spectrometry (EA/IRMS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) for carbon and hydrogen isotopes. These tests elucidated that a combination of the delta13C, delta15N, delta18O and delta2H results from EA/IRMS is able to distinguish between most samples of bulk heroin. We speculate that the delta13C values of the alkaloids, obtained by GC/C/IRMS, give indications of different geographical or temporal origins of some of the heroin samples. GC/C/IRMS of the cutting agent, caffeine, provides a means to link dilution events. Fifteen retail cling film samples and seven cling film samples from heroin seizures were analysed by EA/IRMS. A multivariate comparison of the carbon, hydrogen and oxygen isotope ratios was able to distinguish between most of the samples. This technique enabled the cling films from the heroin to be grouped according to seizure. Three solvents were tested on two samples of cling film of known composition. Methanol and chloroform were both found to extract material from PVC and from non-PVC cling films. Water-treated PVC was indistinguishable from the untreated PVC and thus water was found to be the most suitable solvent when washing cling film prior to IRMS analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号