首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Under most physiological conditions, glucose, or carbohydrate (CHO), homeostasis is tightly regulated. In order to mechanistically appraise the origin of circulating glucose (e.g. via either gluconeogenesis, glycogenolysis or oral glucose intake), and its regulation and oxidation, the use of stable isotope tracers is now a well-accepted analytical technique. Methodologically, liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) can replace gas chromatography coupled to combustion-isotope ratio mass spectrometry (GC/C/IRMS) for carrying out compound-specific (13)C isotopic analysis. The LC/IRMS approach is well suited for studying glucose metabolism, since the plasma glucose concentration is relatively high and the glucose can readily undergo chromatography in an aqueous mobile phase. Herewith, we report two main methodological approaches in a single instrument: (1) the ability to measure the isotopic enrichment of plasma glucose to assess the efficacy of CHO-based treatment (cocoa-enriched) during cycling exercise with healthy subjects, and (2) the capacity to carry out bulk isotopic analysis of labeled solutions, which is generally performed with an elemental analyzer coupled to IRMS. For plasma samples measured by LC/IRMS the data show a isotopic precision SD(δ(13)C) and SD(APE) of 0.7 ‰ and 0.001, respectively, with δ(13)C and APE values of -25.48 ‰ and 0.06, respectively, being generated before and after tracer administration. For bulk isotopic measurements, the data show that the presence of organic compounds in the blank slightly affects the δ(13)C values. Despite some analytical limitations, we clearly demonstrate the usefulness of the LC/IRMS especially when (13)C-glucose is required during whole-body human nutritional studies.  相似文献   

2.
Precise measurement of low enrichment of stable isotope labeled amino‐acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 h intravenous infusion of L‐[ring‐13C6]phenylalanine and a bolus dose of L‐[ring‐13C6]phenylalanine in a mouse were utilized. Liquid chromatography tandem mass spectrometry (LC/MS/MS), gas chromatography (GC) MS/MS and GC/MS were compared to the GC‐combustion‐isotope ratio MS (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring‐13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 molar percent excess. As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra‐assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter‐assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. The muscle sample sizes required to obtain these results were 8 µg, 0.8 µg, 3 µg and 3 µg for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS, respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L‐[ring‐13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The utilisation of carbohydrate sources under exercise conditions is of considerable importance in performance sports. Incorporation of optimal profiles of macronutrients can improve endurance performance in athletes. However, gaining an understanding of the metabolic partitioning under sustained exercise can be problematical and isotope labelling approaches can help quantify substrate utilisation. The utilisation of oral galactose was investigated using 13C‐galactose and measurement of plasma galactose and glucose enrichment by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS). As little as 100 μL plasma could readily be analysed with only minimal sample processing. Fucose was used as a chemical and isotopic internal standard for the quantitation of plasma galactose and glucose concentrations, and isotopic enrichment. The close elution of galactose and glucose required a correction routine to be implemented to allow the measurement, and correction, of plasma glucose δ13C, even in the presence of very highly enriched galactose. A Bland‐Altman plot of glucose concentration measured by LC/IRMS against glucose measured by an enzymatic method showed good agreement between the methods. Data from seven trained cyclists, undergoing galactose supplementation before exercise, demonstrate that galactose is converted into glucose and is available for subsequent energy metabolism. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
To study carbohydrate digestion and glucose absorption, time-dependent (13)C enrichment in plasma glucose is measured after oral administration of naturally occurring (13)C-enriched carbohydrates. The isotope enrichment of the administered carbohydrate is low (APE <0.1%) and plasma (13)C glucose measurements are routinely determined with gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) or liquid chromatography/combustion/isotope ratio mass spectrometry (LC/C/IRMS). In this study, plasma glucose was converted into CO(2) by an in-tube reaction with yeast permitting direct measurement of (13)CO(2) in the headspace. Saccharomyces cerevisiae incubated under anaerobic conditions was able to convert sufficient glucose into CO(2) to produce a consistent CO(2) peak in IRMS with little variation in peak area and precise delta(13)C(PDB) values for corn glucose: -11.40 +/- 0.16 per thousand, potato glucose: -25.17 +/- 0.13 per thousand, and plasma glucose: -26.29 +/- 0.05 per thousand. The measurement showed high linearity (R(2) = 0.999) and selectivity and was not affected by the glucose concentration in the tested range of 5-15 mM. Comparison with GC/C/IRMS showed a good correlation of enrichment data: R(2) > 0.98 for both sources of glucose and plasma samples. Commercially available, instant dried baker's yeast was qualitatively and quantitatively comparable with freshly prepared yeast: R(2) > 0.96, slope 1.03 and 1.08 for glucose solutions and plasma, respectively. Thus, yeast conversion of plasma glucose into CO(2) and (13)C measurement applying a breath (13)CO(2) analyzer is an inexpensive, simple and equally accurate alternative to the more expensive and laborious GC/C/IRMS and LC/C/IRMS measurements.  相似文献   

5.
A reference method to accurately define kinetics in response to the ingestion of glucose in terms of total, exogenous and endogenous glucose is to use stable‐isotope‐labelled compounds such as 2H and 13C glucose followed by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analysis. The use of the usual pentaacetyl (5Ac) derivative generates difficulties in obtaining accurate and reproducible results due to the two chromatographic peaks for the syn and anti isomers, and to the isotopic effect occurring during acetylation. Therefore, the pentaacetylaldononitrile derivative (Aldo) was validated for both isotopes, and compared with the 5Ac derivative. A correction factor including carbon atom dilution (stoichiometric equation) and the kinetic isotopic effect (KIE) was determined. Analytical validation results for the 2H GC/MS and 13C GC/C/IRMS measurements produced acceptable results with both derivatives. When 2H enrichments of plasma samples were ≤1 mol % excess (MPE), the repeatability (RSDAldo Intra assay and Intra day <0.94%, RSD5Ac Intra assay and Intra day <3.29%), accuracy (Aldo <3.4%, 5Ac <29.0%), and stability of the derivatized samples were significantly better when the Aldo derivatives of the plasma samples were used (p < 0.05). When the glucose kinetics were assessed in nine human subjects, after glucose ingestion, the plasma glucose 2H enrichments were identical with both derivatives, whereas the 13C enrichments needed a correction factor to fit together. Due to KIE variation, this correction factor was not constant and had to be calculated for each batch of analyses, to obtain satisfactory results. Mean quantities of exogenous glucose exhibit marked difference (20.9 ± 1.3g (5Ac) vs. 26.7 ± 2.5g (Aldo)) when calculated with stoichiometric correction, but fit perfectly when calculated after application of the correction factor (22.1 ± 1.3g (5Ac) vs. 22.9 ± 1.9g (Aldo)). Finally, the pentaacetylaldononitrile derivative, used here in GC/C/IRMS for the first time, enables measurement of 2H and 13C enrichments in plasma glucose with a single sample preparation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Determination of glutathione kinetics using stable isotopes requires accurate measurement of the tracers and tracees. Previously, the precursor and synthesized product were measured with two separate techniques, liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In order to reduce sample volume and minimize analytical effort we developed a method to simultaneously determine 13C‐glutathione as its dimeric form (GSSG) and its precursor [1‐13C]glycine in a small volume of erythrocytes in one single analysis. After having transformed 13C‐glutathione into its dimeric form GSSG, we determined both the intra‐erythrocytic concentrations and the 13C‐isotopic enrichment of GSSG and glycine in 150 µL of whole blood using liquid chromatography coupled to LC/IRMS. The results show that the concentration (range of µmol/mL) was reliably measured using cycloleucine as internal standard, i.e. with a precision better than 0.1 µmol/mL. The 13C‐isotopic enrichment of GSSG and glycine measured in the same run gave reliable values with excellent precision (standard deviation (sd) <0.3‰) and accuracy (measured between 0 and 5 APE). This novel method opens up a variety of kinetic studies with relatively low dose administration of tracers, reducing the total cost of the study design. In addition, only a minimal sample volume is required, enabling studies even in very small subjects, such as preterm infants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high‐precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment δ13C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline‐resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed‐mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed‐mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed‐mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a practical guide for the development of new chromatographic methods compatible with LC/IRMS applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The incorporation of stable isotopes improves the assessment of glucose metabolism and, with some researchers using two tracers, (2)H-glucose assessed by gas chromatography/mass spectrometry (GC/MS) and (13)C-glucose by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), a common derivative for both is advantageous. The most commonly used derivatives for GC/MS are inappropriate for GC/C/IRMS as additional functional groups dilute the label. We therefore considered the suitability of six derivatives for both GC/MS and GC/C/IRMS. Glucose alkylboronates were prepared by adding the appropriate alkylboronic acid (butyl- or methylboronic acid) in pyridine to desiccated glucose. The derivatisation was completed by reacting this with either (a) acetic anhydride or trifluoroacetic anhydride (acetate derivatives) or (b) bis(trimethylsilyl)trifluoroacetamide BSTFA (TMS derivatives). All six derivatives were assessed using GC/MS and (13)C GC/C/IRMS.Neither TMS derivative exhibited any signal intensity in the molecular ion, although a M-15 ion showed good agreement between experimental and theoretical data and, whilst still low in intensity, could be suitable for isotope work. Similarly, none of the acetate derivatives showed any intensity at the molecular ion although three key fragmentation series were identified. The most attractive sequence, initiated by the loss of 1,2 cyclic boronate, resulted in the main fragment ion of interest, m/z 240, corresponding to the fluorinated methylboronate derivate. Minimal carbon and hydrogen atoms are added to this derivative making it an excellent choice for stable isotope work, while proving suitable for analysis by both GC/MS and GC/C/IRMS.  相似文献   

9.
Studies have shown that the administration of androstenedione (ADIONE) significantly increases the urinary ratio of testosterone glucuronide to epitestosterone glucuronide (T/E) – measured by gas chromatography/mass spectrometry (GC/MS) – in subjects with a normal (≈1) or naturally high (>1) initial values. However, the urinary T/E ratio has been shown not to increase in subjects with naturally low (<1) initial values. Such cases then rely on the detection of C6‐hydroxylated metabolites shown to be indicative of ADIONE administration. While these markers may be measured in the routine GC/MS steroid profile, their relatively low urinary excretion limits the use of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to specifically confirm ADIONE administration based on depleted 13C content. A mass spectrometry strategy was used in this study to identify metabolites of ADIONE with the potential to provide compound‐specific detection. C4‐hydroxylation was subsequently shown to be a major metabolic pathway following ADIONE administration, thereby resulting in urinary excretion of 4‐hydroxyandrostenedione (4OH‐ADIONE). Complementary analysis of 4OH‐ADIONE by GC/MS and GC/C/IRMS was used to confirm ADIONE administration. Copyright © 2008 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.  相似文献   

10.
Amino sugars in soils have been used as markers of microbial necromass and to determine the relative contribution of bacterial and fungal residues to soil organic matter. However, little is known about the dynamics of amino sugars in soil. This is partly because of a lack of adequate techniques to determine ‘turnover rates’ of amino sugars in soil. We conducted an incubation experiment where 13C‐labeled organic substrates of different quality were added to a sandy soil. The objectives were to evaluate the applicability of compound‐specific stable isotope analysis via gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS) for the determination of 13C amino sugars and to demonstrate amino sugar dynamics in soil. We found total analytical errors between 0.8 and 2.6‰ for the δ13C‐values of the soil amino sugars as a result of the required δ13C‐corrections for isotopic alterations due to derivatization, isotopic fractionation and analytical conditions. Furthermore, the δ13C‐values of internal standards in samples determined via GC‐C‐IRMS deviated considerably from the δ13C‐values of the pure compounds determined via elemental analyzer IRMS (with a variation of 9 to 10‰ between the first and third quartile among all samples). This questions the applicability of GC‐C‐IRMS for soil amino sugar analysis. Liquid chromatography‐combustion‐IRMS (LC‐C‐IRMS) might be a promising alternative since derivatization, one of the main sources of error when using GC‐C‐IRMS, is eliminated from the procedure. The high 13C‐enrichment of the substrate allowed for the detection of very high 13C‐labels in soil amino sugars after 1 week of incubation, while no significant differences in amino sugar concentrations over time and across treatments were observed. This suggests steady‐state conditions upon substrate addition, i.e. amino sugar formation equalled amino sugar decomposition. Furthermore, higher quality substrates seemed to favor the production of fungal‐derived amino sugars. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A general method for the determination of the enrichment of isotopically labelled molecules by mass spectrometry (MS) is described. In contrast to other published procedures, the method described here takes into account and corrects for measurement errors such as the contribution at M ? 1 due to loss of hydrogen or lack of spectral resolution and provides an uncertainty value for the determined enrichment. The general procedure requires the following steps: (1) evaluation of linearity in the mass spectrometer by injecting the natural abundance compound at different concentration levels, (2) determination of the purity of the mass cluster using the natural abundance analogue, (3) calculation of the theoretical isotope composition of the labelled compound using different tentative isotope enrichments, (4) calculation of ‘convoluted’ isotope distributions for the labelled compound taking into account the purity of the mass cluster determined with the natural abundance analogue and (5) comparison of the isotope distributions measured for the labelled compound with those calculated for different isotope enrichments using linear regression. The method was applied to a series of commercially available 13C‐ and 2H‐labelled compounds and to a suite of singly 13C‐labelled β2‐agonist prepared in‐house both by gas chromatography (GC)–MS, GC–tandem MS (MS/MS) and liquid chromatography–MS/MS with satisfactory results. It was observed that the main uncertainty source for the isotope enrichment was the uncertainty in the purity of the measured cluster as determined with the natural abundance compound. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Important aspects of glucose metabolism can be quantified by using the minimal model of glucose kinetics to interpret the results of intravenous glucose tolerance tests. The power of this methodology can be greatly increased by the addition of stable isotopically labelled tracer to the glucose bolus dose. This allows the separation of glucose disposal from endogenous glucose production and also increases the precision of the estimates of the physiological parameters measured. Until now the tracer of choice has been deuteriated glucose and the analytical technique has been gas chromatography/mass spectrometry (GC/MS). The consequence of this choice is that nearly 2 g of labelled material are needed and this makes the test expensive. We have investigated the use of (13)C-labelled glucose as the tracer in combination with gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as the analytical technique. This methodology offers superior analytical precision when compared with the conventional method and so the amount of tracer used, and hence the cost, can be reduced considerably. Healthy non-obese male volunteers were recruited for a standard intravenous glucose tolerance test (IVGTT) protocol but 6,6-(2)H-glucose and 1-(13)C-glucose were administered simultaneously. Tracer/tracee ratios were derived from isotope ratio measurements of plasma glucose using both GC/MS and GC/C/IRMS. The results of these determinations indicated that the two tracers behaved identically under the test protocol. The combination of these results with plasma glucose and insulin concentration data allowed determination of the minimal model parameters S*g and S*i. The parameter relating to insulin-assisted glucose disposal, S*i, was found to be the same in the two techniques, but this was not the case for the non-insulin-dependent parameter S*g.  相似文献   

13.
Compound‐specific isotope analysis (CSIA) by liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) has until now been based on ion‐exchange separation. In this work, high‐temperature reversed‐phase liquid chromatography was coupled to, and for the first time carefully evaluated for, isotope ratio mass spectrometry (HT‐LC/IRMS) with four different stationary phases. Under isothermal and temperature gradient conditions, the column bleed of XBridge C18 (up to 180 °C), Acquity C18 (up to 200 °C), Triart C18 (up to 150 °C), and Zirchrom PBD (up to 150 °C) had no influence on the precision and accuracy of δ13C measurements, demonstrating the suitability of these columns for HT‐LC/IRMS analysis. Increasing the temperature during the LC/IRMS analysis of caffeine on two C18 columns was observed to result in shortened analysis time. The detection limit of HT‐RPLC/IRMS obtained for caffeine was 30 mg L–1 (corresponding to 12.4 nmol carbon on‐column). Temperature‐programmed LC/IRMS (i) accomplished complete separation of a mixture of caffeine derivatives and a mixture of phenols and (ii) did not affect the precision and accuracy of δ13C measurements compared with flow injection analysis without a column. With temperature‐programmed LC/IRMS, some compounds that coelute at room temperature could be baseline resolved and analyzed for their individual δ13C values, leading to an important extension of the application range of CSIA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring‐13C6]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically labeled amino acid will be incorporated within the few hours of a typical laboratory experiment. GC combustion isotope ratio MS (GC‐C‐IRMS) has thus far been considered the ‘gold’ standard for the precise measurements of these low enrichment levels. However, advances in liquid chromatography‐tandem MS (LC‐MS/MS) and GC‐tandem MS (GC‐MS/MS) have made these techniques an option for human muscle FSR measurements. Human muscle biopsies were freeze dried, cleaned, and hydrolyzed, and the amino acids derivatized using either N‐acetyl‐n‐propyl, phenylisothiocyanate, or N‐methyl‐N‐(tert‐butyldimethylsilyl)trifluoroacetamide (MTBSTFA) for GC‐C‐IRMS, LC‐MS/MS, and GC‐MS/MS analysis, respectively. A second derivative, heptafluorobutyric acid (HFBA), was also used for GC‐MS/MS analysis as an alternative for MTBSTFA. The machine reproducibility or the coefficients of variation for delta tracer‐tracee‐ratio measurements (delta tracer‐tracee‐ratio values around 0.0002) were 2.6%, 4.1%, and 10.9% for GC‐C‐IRMS, LC‐MS/MS, and GC‐MS/MS (MTBSTFA), respectively. FSR determined with LC‐MS/MS compared well with GC‐C‐IRMS and so did the GC‐MS/MS when using the HFBA derivative (linear fit Y = 1.08 ± 0.10, X + 0.0049 ± 0.0061, r = 0.89 ± 0.01, P < 0.0001). In conclusion, (1) IRMS still offers the most precise measurement of human muscle FSR, (2) LC‐MS/MS comes quite close and is a good alternative when tissue quantities are too small for GC‐C‐IRMS, and (3) If GC‐MS/MS is to be used, then the HFBA derivative should be used instead of MTBSTFA, which gave unacceptably high variability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Gaseous membrane permeation (MP) technologies have been combined with continuous‐flow isotope ratio mass spectrometry for on‐line δ13C measurements. The experimental setup of membrane permeation‐gas chromatography/combustion/isotope ratio mass spectrometry (MP‐GC/C/IRMS) quantitatively traps gas streams in membrane permeation experiments under steady‐state conditions and performs on‐line gas transfer into a GC/C/IRMS system. A commercial polydimethylsiloxane (PDMS) membrane sheet was used for the experiments. Laboratory tests using CO2 demonstrate that the whole process does not fractionate the C isotopes of CO2. Moreover, the δ13C values of CO2 permeated on‐line give the same isotopic results as off‐line static dual‐inlet IRMS δ13C measurements. Formaldehyde generated from aqueous formaldehyde solutions has also been used as the feed gas for permeation experiments and on‐line δ13C determination. The feed‐formaldehyde δ13C value was pre‐determined by sampling the headspace of the thermostated aqueous formaldehyde solution. Comparison of the results obtained by headspace with those from direct aqueous formaldehyde injection confirms that the headspace sampling does not generate isotopic fractionation, but the permeated formaldehyde analyzed on‐line yields a 13C enrichment relative to the feed δ13C value, the isotopic fractionation being 1.0026 ± 0.0003. The δ13C values have been normalized using an adapted two‐point isotopic calibration for δ13C values ranging from ?42 to ?10‰. The MP‐GC/C/IRMS system allows the δ13C determination of formaldehyde without chemical derivatization or additional analytical imprecision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The stable carbon isotope compositions of tetrols, erythritol and threitol were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using four tetrols with various δ13C values derivatized by methylboronic acid, the carbon isotope analysis method achieved excellent reproducibility and high accuracy. There was no carbon isotopic fractionation during the derivatization processes. The differences in the carbon isotopic compositions of methylboronates between the measured and calculated ranged from ?0.20 to 0.12‰, within the specification of the GC/C/IRMS system. It was demonstrated that δ13C values of tetrols could be calculated by a simple mass balance equation between tetrols, methylboronic acid, and methylboronates. The analogous 2‐methyltetrols, marker compounds of photooxidation products of atmospheric isoprene, should have similar behavior using the same derivatization reagent. This method may provide insight on sources and sinks of atmospheric isoprene. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The scope of compound-specific stable isotope analysis has recently been increased with the development of the LC IsoLink which interfaces high-performance liquid chromatography (HPLC) and isotope ratio mass spectrometry (IRMS) to provide online LC/IRMS. This enables isotopic measurement of non-volatile compounds previously not amenable to compound-specific analysis or requiring substantial modification for gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), which results in reduced precision. Amino acids are an example of such compounds.We present a new chromatographic method for the HPLC separation of underivatized amino acids using an acidic, aqueous mobile phase in conjunction with a mixed-mode stationary phase that can be interfaced with the LC IsoLink for compound-specific delta13C analysis. The method utilizes a reversed-phase Primesep-A column with embedded, ionizable, functional groups providing the capability for ion-exchange and hydrophobic interactions. Baseline separation of 15 amino acids and their carbon isotope values are reported with an average standard deviation of 0.18 per thousand (n = 6). In addition delta13C values of 18 amino acids are determined from modern protein and archaeological bone collagen hydrolysates, demonstrating the potential of this method for compound-specific applications in a number of fields including metabolic, ecological and palaeodietary studies.  相似文献   

18.
Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the δ values of these reference materials should bracket the isotopic range of samples with unknown δ values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW‐SLAP) and carbonates (NBS 19 and L‐SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA‐IRMS). At present only L‐glutamic acids USGS40 and USGS41 satisfy these requirements for δ13C and δ15N, with the limitation that L‐glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on‐line (i.e. continuous flow) hydrogen reductive gas chromatography‐isotope ratio mass‐spectrometry (GC‐IRMS), (ii) five nicotines for oxidative C, N gas chromatography‐combustion‐isotope ratio mass‐spectrometry (GC‐C‐IRMS, or GC‐IRMS), and (iii) also three acetanilide and three urea reference materials for on‐line oxidative EA‐IRMS for C and N. Isotopic off‐line calibration against international stable isotope measurement standards at Indiana University adhered to the ‘principle of identical treatment’. The new reference materials cover the following isotopic ranges: δ2Hnicotine ?162 to ?45‰, δ13Cnicotine ?30.05 to +7.72‰, δ15Nnicotine ?6.03 to +33.62‰; δ15Nacetanilide +1.18 to +40.57‰; δ13Curea ?34.13 to +11.71‰, δ15Nurea +0.26 to +40.61‰ (recommended δ values refer to calibration with NBS 19, L‐SVEC, IAEA‐N‐1, and IAEA‐N‐2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC‐IRMS that are available with different δ15N values. Comparative δ13C and δ15N on‐line EA‐IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA‐IRMS reference materials. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

19.
Pulmonary surfactant is a complex mixture of phospholipids and proteins which lowers surface tension and maintains alveolar expansion at end expiration. Developmental and genetic disruption of pulmonary surfactant metabolism leads to respiratory distress in newborns. Stable isotope labeling of metabolic precursors of disaturated phospholipids, the most abundant and specific component of pulmonary surfactant, permits the measurement of the kinetics of surfactant metabolism in vivo. We measured [U-(13)C(6)]glucose incorporation into palmitic acid derived from disaturated surfactant phospholipids. A 24 h infusion of [U-(13)C(6)]glucose (140 mg kg(-1)) was administered to a premature infant who required mechanical ventilation for respiratory distress syndrome; tracheal aspirate samples were obtained at the start of the infusion and at regular intervals for the next 70 h. Each tracheal aspirate sample was incubated with osmium tetroxide to isolate disaturated surfactant phospholipids. Methyl esters of the fatty acids in the disaturated phospholipids were prepared and the enrichment of [(13)C]methyl palmitate was measured by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combination/isotope ratio mass spectrometry (GC/C/IRMS). Mass isotopomer distribution analysis (MIDA) was used to calculate the fractional synthetic rate (FSR) of palmitate synthesized from acetate. With both GC/MS and GC/C/IRMS, palmitate (13)C enrichment was first detected 12.3 h after the start of the tracer infusion. The enrichment increased in a linear fashion, reached a peak at 47 h and remained constant in the remainder of the samples. The FSR of palmitate from acetate was 5.2% per day. Stable isotope techniques and MIDA will provide insights into the kinetics of surfactant metabolism in newborns with respiratory dysfunction.  相似文献   

20.
The introduction of liquid chromatography coupled with isotope ratio mass spectrometry (LC/IRMS) as an analytical tool for the measurement of isotope ratios in non‐volatile analytes has somewhat simplified the analytical cycle from sample collection to analysis mainly due to the avoidance of the extensive sample processing and derivatisation that were necessary for gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Here we test the performance of coupling strong anion exchange to IRMS using only the second commercially available interface; the Liquiface. The system was modified from installation specification to improve peak resolution in the interface and maintain peak separation from the column to the mass spectrometer. The system performance was assessed by the determination of sensitivity, accuracy and precision attained from carbohydrate separations. The system performed satisfactorily after modifications, resulting in maintenance of peak resolution from column to mass spectrometer. The sensitivity achieved suggested that ~150 ng carbon could be analysed with acceptable precision (<0.3‰). Accuracy was maintained in the interface as determined by correlation with offline techniques, resulting in regression coefficient of r2 = 0.98 and a slope of 0.99. The average precision achieved for the separation of seven monosaccharides was 0.36‰. The integration of a carbonate removal device limited the effect of background carbon perturbations in the mass spectrometer associated with eluent gradients, and the coupling of strong anion‐exchange chromatography with IRMS was successfully achieved using the Liquiface. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号