首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The purpose of this research is to numerically study a drag reduction method—passive control of shock/boundary layer interaction, which is applied to the boattail portion of a secant-ogive-cylinder-boattail projectile in turbulent transonic flows. The flow pattern and the components of aerodynamic drag computed from numerical data are analyzed. The effectiveness of this method is studied by varying the values of parameters such as porosity distribution, maximum porosity factor and size of porous region. The conditions for optimal drag reduction are investigated and reported. The present results show that the use of this passive control method can not only reduce the boattail drag but also the base drag, and results in an additional 8% total drag reduction compared to that without the passive control technique. This passive control method can be an effective approach for the design of high-performance projectiles in the transonic regime.  相似文献   

2.
This paper presents an experimental and numerical investigation on the natural convection flow in a cylindrical model hydrothermal reactor. The flow is visualized non-intrusively and simulated with a conjugate computational model. Results show that the flow structure consists of wall layers and core flows. In the lower half, the flows are steady due to the porous media. The three-dimensional unsteady upper core flow is driven by the streams originated from the wall layer collision. The thermal condition in the upper half core region is mainly determined by the total heat flow rate specified on the lower sidewall; while the variations of porous media parameters, in the normal range for hydrothermal crystal growth process, have minor effects.  相似文献   

3.
4.
There have been a few recent numerical implementations of the stress‐jump condition at the interface of conjugate flows, which couple the governing equations for flows in the porous and homogenous fluid domains. These previous demonstration cases were for two‐dimensional, planar flows with simple geometries, for example, flow over a porous layer or flow through a porous plug. The present study implements the interfacial stress‐jump condition for a non‐planar flow with three velocity components, which is more realistic in terms of practical flow applications. The steady, laminar, Newtonian flow in a stirred micro‐bioreactor with a porous scaffold inside was investigated. It is shown how to implement the interfacial jump condition on the radial, axial, and swirling velocity components. To avoid a full three‐dimensional simulation, the flow is assumed to be independent of the azimuthal direction, which makes it an axisymmetric flow with a swirling velocity. The present interface treatment is suitable for non‐flat surfaces, which is achieved by applying the finite volume method based on body‐fitted and multi‐block grids. The numerical simulations show that a vortex breakdown bubble, attached to the free surface, occurs above a certain Reynolds number. The presence of the porous scaffold delays the onset of vortex breakdown and confines it to a region above the scaffold. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
6.
A clear understanding of two-phase flows in porous media is important for investigating CO2 geological storage. In this study, we conducted an experiment of CO2/brine flow process in porous media under sequestration conditions using X-ray CT technique. The flow properties of relative permeability, porosity heterogeneity, and CO2 saturation were observed in this experiment. The porous media was packed with glass beads having a diameter of 0.2 mm. The porosity distribution along the flow direction is heterogeneous owing to the diameter and shape of glass beads along the flow direction. There is a relationship between CO2 saturation and porosity distribution, which changes with different flow rates and fractional flows. The heterogeneity of the porous media influences the distribution of CO2; moreover, gravity, fractional flows, and flow rates influence CO2 distribution and saturation. The relative permeability curve was constructed using the steady-state method. The results agreed well with the relative permeability curve simulated using pore-network model.  相似文献   

7.
Near wellbore flow in high rate gas wells shows the deviation from Darcy??s law that is typical for high Reynolds number flows, and prediction requires an accurate estimate of the non-Darcy coefficient (?? factor). This numerical investigation addresses the issues of predicting non-Darcy coefficients for a realistic porous media. A CT-image of real porous medium (Castlegate Sandstone) was obtained at a resolution of 7.57???m. The segmented image provides a voxel map of pore-grain space that is used as the computational domain for the lattice Boltzmann method (LBM) based flow simulations. Results are obtained for pressure-driven flow in the above-mentioned porous media in all directions at increasing Reynolds number to capture the transition from the Darcy regime as well as quantitatively predict the macroscopic parameters such as absolute permeability and ?? factor (Forchheimer coefficient). Comparison of numerical results against experimental data and other existing correlations is also presented. It is inferred that for a well-resolved realistic porous media images, LBM can be a useful computational tool for predicting macroscopic porous media properties such as permeability and ?? factor.  相似文献   

8.
Numerical modeling of flow through vuggy porous media, mainly vuggy carbonates, is a challenging endeavor. Firstly, because the presence of vugs can significantly alter the effective porosity and permeability of the medium. Secondly, because of the co‐existence of porous and free flow regions within the medium and the uncertainties in defining the exact boundary between them. Traditionally, such heterogeneous systems are modeled by the coupled Darcy–Stokes equations. However, numerical modeling of flow through vuggy porous media using coupled Darcy–Stokes equations poses several numerical challenges particularly with respect to specification of correct interface condition between the porous and free‐flow regions. Hence, an alternative method, a more unified approach for modeling flows through vuggy porous media, the Stokes–Brinkman model, is proposed here. It is a single equation model with variable coefficients, which can be used for both porous and free‐flow regions. This also makes the requirement for interface condition redundant. Thus, there is an obvious benefit of using the Stokes–Brinkman equation, which can be reduced to Stokes or Darcy equation by the appropriate choice of parameters. At the same time, the Stokes–Brinkman equation provides a smooth transition between porous and free‐flow region, thereby taking care of the associated uncertainties. A numerical treatment for upscaling Stokes–Brinkman model is presented as an approach to use Stokes–Brinkman model for multi‐phase flow. Numerical upscaling methodology is validated by analyzing the error norm for numerical pressure convergence. Stokes–Brinkman single equation model is tested on a series of realistic data sets, and the results are compared with traditional coupled Darcy–Stokes model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
On the basis of a numerical solution of the two-dimensional Navier-Stokes equations, the stability and the receptivity of a supersonic (M = 6) boundary layer on a flat plate with a passive porous coating partially absorbing flow disturbances is studied. The results of direct numerical simulation are in good agreement with the data of the linear stability theory. The studies confirm the possibility of effectively stabilizing the second mode of the supersonic boundary layer using porous coatings.  相似文献   

10.
Modeling the flow of emulsion in porous media is extremely challenging due to the complex nature of the associated flows and multiscale phenomena. At the pore scale, the dispersed phase size can be of the same order of magnitude of the pore length scale and therefore effective viscosity models do not apply. A physically meaningful macroscopic flow model must incorporate the transport of the dispersed phase through the porous material and the changes on flow resistance due to drop deformation as it flows through pore throats. In this work, we present a dynamic capillary network model that uses experimentally determined pore-level constitutive relationships between flow rate and pressure drop in constricted capillaries to obtain representative transient macroscopic flow behavior emerging from microscopic emulsion flow at the pore level. A parametric analysis is conducted to study the effect of dispersed phase droplet size and capillary number on the flow response to both emulsion and alternating water/emulsion flooding in porous media. The results clearly show that emulsion flooding changes the continuous-phase mobility and consequently flow paths through the porous media, and how the intensity of mobility control can be tuned by the emulsion characteristics.  相似文献   

11.
In this paper, the macroscopic equations of mass and momentum are developed and discretized based on the smoothed particle hydrodynamics (SPH) formulation for the interaction at an interface of flow with porous media. The theoretical background of flow through porous media is investigated to highlight the key constraints that should be satisfied, particularly at the interface between the porous media flow and the overlying free flow. The study aims to investigate the derivation of the porous flow equations, computation of the porosity, and treatment of the interfacial boundary layer. It addresses weak assumptions that are commonly adopted for interfacial flow simulation in particle-based methods. As support to the theoretical analysis, a two-dimensional weakly compressible SPH model is developed based on the proposed interfacial treatment. The equations in this model are written in terms of the intrinsic averages and in the Lagrangian form. The effect of particle volume change due to the spatial change of porosity is taken into account, and the extra stress terms in the momentum equation are approximated by using Ergun's equation and the subparticle scale model to represent the drag and turbulence effects, respectively. Four benchmark test cases covering a range of flow scenarios are simulated to examine the influence of the porous boundary on the internal, interface, and external flows. The capacity of the modified SPH model to predict velocity distributions and water surface behavior is fully examined with a focus on the flow conditions at the interfacial boundary between the overlying free flow and the underlying porous media.  相似文献   

12.
The flow of non-Newtonian fluids through two-dimensional porous media is analyzed at the pore scale using the smoothed particle hydrodynamics (SPH) method. A fully explicit projection method is used to simulate incompressible flow. This study focuses on a shear-thinning power-law model (n < 1), though the method is sufficiently general to include other stress-shear rate relationships. The capabilities of the proposed method are demonstrated by analyzing a Poiseuille problem at low Reynolds numbers. Two test cases are also solved to evaluate validity of Darcy’s law for power-law fluids and to investigate the effect of anisotropy at the pore scale. Results show that the proposed algorithm can accurately simulate non-Newtonian fluid flows in porous media.  相似文献   

13.
We study the stability of the flow which forms in a plane channel with influx of an incompressible viscous fluid through its porous parallel walls. Under certain assumptions the study of the stability reduces to the solution of modified Orr-Sommerfeld equation accounting for the transverse component of the main-flow velocity. As a result of numerical integration of this equation we find the dependence of the local critical Reynolds number on the blowing Reynolds number R0, which may be defined by two factors: the variation of the longitudinal velocity profile with R0 and the presence of the transverse velocity component. A qualitative comparison is made of the computational results with experimental data on transition from laminar to turbulent flow regimes in channels with porous walls, which confirms that it is necessary to take into account the effect of the transverse component of the main-flow velocity on the main-flow stability in the problem in question.Flows in channels with porous walls are of interest for hydrodynamic stability theory in view of the fact that they can be described by the exact solutions of the Navier-Stokes equations by analogy with the known Poiseuille and Couette flows. However, in contrast with the latter, the flows in channels with porous walls (studies in [1], for example) will be nonparallel.The theory of hydrodynamic stability of parallel flows has frequently been applied to nonparallel flows (in the boundary layer, for example). In so doing the nonparallel nature of the flow has been taken into account only by varying the longitudinal velocity component profiles. A study was made in [2, 3] of the effect of the transverse component of the main flow on its stability. In the case of the boundary layer in a compressible gas, a considerable influence of the transverse velocity component on the critical Reynolds number was found in [2] and confirmed experimentally. A strong influence of the transverse velocity component on the instability region was also found in [3] in a study of the flow stability in a boundary layer with suction for an incompressible fluid.  相似文献   

14.
The movement of wetting and nonwetting fluid flow in columns packed with glass beads is used to understand the more complicated flows in homogeneous porous media. The motion of two immiscible liquids (oil and water) is observed with different surfactants. Through dimensional analyses, fluid velocity is well correlated with interfacial tension and less dependent on particle size. In water–oil (W/O) experiments, finger pattern flows are observed if water is the displacing fluid that flows in an oil-filled porous media, whereas oil ganglia tend to form if oil is the displacing fluid in the water-wetted porous media. The results are well described by a simple model based on an earlier theory of flow in a tube.  相似文献   

15.
PIV measurements have been performed for turbulent flows in a rib-mounted channel whose bottom wall is made of a porous layer. The ratio of the rib and channel heights is fixed at 0.5. The effects of the wall and rib permeability are investigated focusing on the separating and reattaching flows at the bulk Reynolds number of 103???104. Three kinds of foamed ceramics are employed as the porous media. They have the same porosity of 0.8 but each permeability is different from the others. Its normalized values by the rib height are 0.89 × 10???4, 1.47 × 10???4 and 3.87 × 10???4. Two kinds of square cylinder ribs: an impermeable smooth solid rib or a permeable porous rib which is made of the same porous medium as that for the bottom wall are used. The obtained turbulent velocity fields of the solid rib flows indicate that the turbulent intensity behind the rib becomes weak and the recirculation bubble in the clear channel tends to vanish as the the wall permeability increases. In the porous rib flow, the recirculation and the reattachment point shift downstream and turbulence becomes weaker due to the bleeding flow through the rib. In the higher permeability cases, the recirculation bubble hardly exists due to the flows through not only the bottom wall but also the porous rib. From the measurements, it is suggested that in the solid rib flows, a reverse flow region exists inside the porous wall whereas in porous rib flows, such reverse flow does not exist at higher permeability.  相似文献   

16.
We propose a computational method for approximating the heat transfer coefficient of fully-developed flow in porous media. For a representative elementary volume of the porous medium we develop a transport model subject to periodic boundary conditions that describes incompressible fluid flow through a uniformly heated porous solid. The transport model uses a pair of pore-scale energy equations to describe conjugate heat transfer. With this approach, the effect of solid and fluid material properties, such as volumetric heat capacity and thermal conductivity, on the overall heat transfer coefficient can be investigated. To cope with geometrically complex domains we develop a numerical method for solving the transport equations on a Cartesian grid. The computational method provides a means for approximating the heat transfer coefficient of porous media where the heat generated in the solid varies “slowly” with respect to the space and time scales of the developing fluid. We validate the proposed method by computing the Nusselt number for fully developed laminar flow in tubes of rectangular cross section with uniform wall heat flux. Detailed results on the variation of the Nusselt number with system parameters are presented for two structured models of porous media: an inline and a staggered arrangement of square rods. For these configurations a comparison is made with literature on fully-developed flows with isothermal walls.  相似文献   

17.
A regular two-parameter perturbation analysis based upon the boundary layer approximation is presented here to study the radiative effects of both first- and second-order resistances due to a solid matrix on the natural convection flows in porous media. Four different flows have been studied, those adjacent to an isothermal surface, a uniform heat flux surface, a plane plume and the flow generated from a horizontal line energy source on a vertical adiabatic surface. The first-order perturbation quantities are presented for all these flows. Numerical results for the four conditions with various radiation parameters are tabulated.  相似文献   

18.
The non-darcy mixed convection flows from heated vertical and horizontal plates in saturated porous media have been considered using boundary layer approximations. The flows are considered to be driven by multiple buoyancy forces. The similarity solutions for both vertical and horizontal plates have been obtained. The governing equations have been solved numerically using a shooting method. The heat transfer, mass transfer and skin friction are reduced due to inertial forces. Also, they increase with the buoyancy parameter for aiding flow and decrease for the opposing flow. For aiding flow, the heat and mass transfer coefficients are found to approach asymptotically the forced or free convection values as the buoyancy parameter approaches zero or infinity.  相似文献   

19.
Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann(LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas–liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.  相似文献   

20.
In this study, creeping and inertial incompressible fluid flows through three-dimensional porous media are considered, and an analytical–numerical approach is employed to calculate the associated permeability and apparent permeability. The multiscale homogenization method for periodic structures is applied to the Stokes and Navier–Stokes equations (aided by a control-volume type argument in the latter case), to derive the appropriate cell problems and effective properties. Numerical solutions are then obtained through Galerkin finite-element formulations. The implementations are validated, and results are presented for flows through cubic lattices of cylinders, and through the dendritic zone found at the solid–liquid interface during solidification of metals. For the interdendritic flow problem, a geometric configuration for the periodic cell is built by the approximate matching of experimental and numerical results for the creeping-flow problem; inertial effects are then quantified upon solution of the inertial-flow problem. Finally, the functional behavior of the apparent permeability results is analyzed in the light of existing macroscopic seepage laws. The findings contribute to the (numerical) verification of the validity of such laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号