首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The flow properties of complex fluids through porous media give rise to multiphase flow displacement mechanisms that operate at different scales, from pore-level to Darcy scale. Experiments have shown that injection of oil-in-water emulsions can be used as an effective enhanced-oil recovery (EOR) method, leading to substantial increase in the volume of oil recovered. Pore-scale flow visualization as well as core flooding results available in the literature have demonstrated that the enhanced recovery factor is regulated by the capillary number of the flow. However, the mechanisms by which additional oil is displaced during emulsion injection are still not clear. In this work, we carried out two different experiments to evaluate the effect of emulsion flooding both at pore and macro scales. Visualization of the flow through sand packed between transparent plexiglass parallel plates shows that emulsion flooding improves the pore-level displacement efficiency, leading to lower residual oil saturation. Oil recovery results during emulsion flooding in tertiary mode (after waterflooding) in parallel sandstone cores with very different absolute permeability values prove that emulsion flooding also leads to enhancement of conformance or volumetric sweep efficiency. Combined, the results presented here show that injection of emulsion offers multiscale mechanisms resulting from capillary-driven mobility control.  相似文献   

2.
The flow of oil-in-water emulsions through quartz micro-capillary tubes was analyzed experimentally. The capillaries were used as models of connecting pore-throats between adjacent pore body pairs in high-permeability media. Pressure drop between the inlet and outlet ends of the capillary was recorded as a function of time, for several values of the volumetric flow rate. Several distinct emulsions were prepared using synthetic oils in deionized water, stabilized by a surfactant (Triton X-100). Two oils of different viscosity values were used to prepare the emulsions, while two distinct drop size distributions were obtained by varying the mixing procedure. The average oil drop size varied from smaller to larger than the neck radius. The results are presented in terms of the extra-pressure drop due to the presence of the dispersed phase, i.e. the difference between the measured pressure drop and the one necessary to drive the continuous phase alone at the same flow rate. For emulsions with drops smaller than the capillary throat diameter, the extra-pressure drop does not vary with capillary number and it is a function of the viscosity ratio, dispersed phase concentration and drop size distribution. For emulsions with drops larger than the constriction, the large oil drops may partially block the capillary, leading to a high extra pressure difference at low capillary numbers. Changes in the local fluid mobility by means of pore-throat blockage may help to explain the additional oil recovery observed in laboratory experiments and the sparse data on field trials.  相似文献   

3.
油水乳化渗流是三元复合驱和热力采油过程中常见的现象,地层介质的微观孔隙结构特征对乳状液流动有着重要影响.现有描述乳状液渗流的理论模型都属于确定性方法,只能反映出介质孔隙结构的体积平均效果.当介质内部微观非均质性相比其尺寸不能被忽略时,采用确定性方法描述会与实验结果存在偏差.基于连续时间随机游走理论建立了描述乳状液渗流的随机理论模型.该模型引入反映液滴微观运动特征的跃迁时间和跃迁位移两个概率分布函数来反映多孔介质微观非均质特征.研究结果表明该模型能很好地刻画实验曲线中出现的与介质尺度相关的拖尾现象,可作为更一般的过滤模型.  相似文献   

4.
Enhanced oil recovery (EOR) by alkaline flooding for conventional oils has been extensively studied. For heavy oils, investigations are very limited due to the unfavorable mobility ratio between the water and oil phases. In this study, the displacement mechanisms of alkaline flooding for heavy oil EOR are investigated by conducting flood tests in a micromodel. Two different displacement mechanisms are observed for enhancing heavy oil recovery. One is in situ water-in-oil (W/O) emulsion formation and partial wettability alteration. The W/O emulsion formed during the injection of alkaline solution plugs high permeability water channels, and pore walls are altered to become partially oil-wetted, leading to an improvement in sweep efficiency and high tertiary oil recovery. The other mechanism is the formation of an oil-in-water (O/W) emulsion. Heavy oil is dispersed into the water phase by injecting an alkaline solution containing a very dilute surfactant. The oil is then entrained in the water phase and flows out of the model with the water phase.  相似文献   

5.
Pore-Network Modeling of Isothermal Drying in Porous Media   总被引:1,自引:0,他引:1  
In this paper we present numerical results obtained with a pore-network model for the drying of porous media that accounts for various processes at the pore scale. These include mass transfer by advection and diffusion in the gas phase, viscous flow in the liquid and gas phases and capillary effects at the liquid--gas interface. We extend our work by studying the effect of capillarity-induced flow in macroscopic liquid films that form at the pore walls as the liquid--gas interface recedes. A mathematical model that accounts for the effect of films on the drying rates and phase distribution patterns is presented. It is shown that film flow is a major transport mechanism in the drying of porous materials, its effect being dominant when capillarity controls the process, which is the case in typical applications.  相似文献   

6.
Yang  D.  Udey  N.  Spanos  T. J. T. 《Transport in Porous Media》1998,32(2):187-198
A thermodynamic lattice gas (automaton) model is used to simulate dispersion in porous media. Simulations are constructed at two distinctly different scales, the pore scale at which capillary models are constructed and large scale or Darcy scale at which probabilistic collision rules are introduced. Both models allow for macroscopic (pore scale) phase separation. The pore scale models clearly show the effect of pore structure on dispersion. The large scale (mega scale) simulations indicate that when the pressure difference between the displacing phase and displaced phase is properly chosen (representing the average pressure gradient between the phases). The simulation results are consistent with both theoretical predictions and experimental observations.  相似文献   

7.
Transport in Porous Media - A macroscopic model that accounts for the effect of momentum dispersion on flows in porous media is proposed. The model is based on the pore scale prevalence hypothesis...  相似文献   

8.
李勇  钱蔚旻  何录武 《力学季刊》2022,43(1):171-177
在表征体元尺度采用格子Boltzmann方法分析膨胀性非牛顿流体在多孔介质中的流动,基于二阶矩模型在演化方程中引入表征介质阻力的作用力项,求解描述渗流模型的广义Navier-Stokes方程.采用局部法计算形变速率张量,通过循环迭代得到非牛顿粘度和松弛时间.对多孔介质的Poiseuille流动进行分析,通过比较发现结果与孔隙尺度的解析解十分吻合,并且收敛较快,表明方法合理有效.分析了渗透率和幂律指数对速度和压力降的影响,研究结果表明,膨胀性流体的多孔介质流动不符合达西规律,压力降的增加幅度小于渗透率的减小幅度.当无量纲渗透率Da小于10-5时,流道中的速度呈现均匀分布,并且速度分布随着幂律指数的减小趋于平滑.压力降随着幂律指数的增加而增加,Da越大幂律指数对压力降的影响越明显.  相似文献   

9.
In Part I of this study, generalized mathematical models were developed to describe the motion of fluids in porous media. The second part of this study solved the problem of fluid flow in small channels of a periodic elastic solid matrix at the pore scale numerically, and applied the volume-averaging technique to predict the macroscopic behavior of reservoirs. The numerical results demonstrated different macroscopic behavior of a porous medium due to cyclic excitation at various frequencies corresponding to the five separate characteristic macroscopic models identified in Part I. The results emphasize the need to use an appropriate model to interpret the corresponding responses of a saturated porous medium.  相似文献   

10.
The flow of non-Newtonian fluids through two-dimensional porous media is analyzed at the pore scale using the smoothed particle hydrodynamics (SPH) method. A fully explicit projection method is used to simulate incompressible flow. This study focuses on a shear-thinning power-law model (n < 1), though the method is sufficiently general to include other stress-shear rate relationships. The capabilities of the proposed method are demonstrated by analyzing a Poiseuille problem at low Reynolds numbers. Two test cases are also solved to evaluate validity of Darcy’s law for power-law fluids and to investigate the effect of anisotropy at the pore scale. Results show that the proposed algorithm can accurately simulate non-Newtonian fluid flows in porous media.  相似文献   

11.
In many applications of two-phase flow in porous media, a wetting phase is used to displace through a network of pore conduits as much as possible of a non-wetting phase, residing in situ. The energy efficiency of this physical process may be assessed by the ratio of the flow rate of the non-wetting phase over the total mechanical power externally provided and irreversibly dissipated within the process. Fractional flow analysis, extensive simulations implementing the DeProF mechanistic model, as well as a recent retrospective examination of laboratory studies have revealed universal systematic trends of the energy efficiency in terms of the actual independent variables of the process, namely the capillary number, Ca, and the flow rate ratio, r. These trends can be cast into an energy efficiency map over the (Ca, r) domain of independent variables. The map is universal for all types of non-wetting/wetting phase porous medium systems. It demarcates the efficiency of steady-state two-phase flow processes in terms of pertinent system parameters. The map can be used as a tool for designing more efficient processes, as well as for the normative characterization of two-phase flows, as to the predominance of capillary or viscous effects. This concept is based on the existence of a unique locus of critical flow conditions, for which the energy efficiency takes locally maximum values. The locus shape depends on the physicochemical characteristics of the non-wetting phase/wetting phase/porous medium system, and it shows a significant mutation as the externally imposed flow conditions change the type of flow, from capillary- to viscosity-dominated. The locus can be approached by an S-type functional form in terms of the capillary number and the system properties (viscosity ratio, wettability, pore network geometry, etc.), suggesting that formative criteria can be derived for flow characterization in any system. A new, extended definition of the capillary number is also proposed that effectively takes into account the critical properties of all the system constituents. When loci of critical flow conditions pertaining to processes with different viscosity ratio in the same pore network, are expressed in terms of this true-to-mechanism capillary number, they collapse into a unique locus. In this context, a new methodology for the effective characterization of pore networks is proposed.  相似文献   

12.
Numerical models that solve transport of pollutants at the macroscopic scale in unsaturated porous media need the effective diffusion dependence on saturation as an input. We conducted numerical computations at the pore scale in order to obtain the effective diffusion curve as a function of saturation for an academic sphere packing porous medium and for a real porous medium where pore structure knowledge was obtained through X-ray tomography. The computations were performed using a combination of lattice Boltzmann models based on two relaxation time (TRT) scheme. The first stage of the calculations consisted in recovering the water spatial distribution into the pore structure for several fixed saturations using a phase separation TRT lattice Boltzmann model. Then, we performed diffusion computation of a non-reactive solute in the connected water structure using a diffusion TRT lattice Boltzmann model. Finally, the effective diffusion for each selected saturation value was estimated through inversion of a macroscopic classical analytical solution.  相似文献   

13.
To investigate the influence of the organosilicon-acrylic on wetting properties of porous media, contact angle tests were performed on two different sandstones. In addition, the effectiveness of the emulsion on wettability alteration of porous media was validated by capillary rise and spontaneous imbibition tests. The results of wettability tests showed that the wettability of two sandstones was altered from water-wet to gas-wet after treatment with the emulsion. The principle that the critical radius of pore throats and wettability of porous media affect liquids flow was derived analytically and verified experimentally. Coreflood results demonstrated that the latex resulted in increasing the water permeability through altering the rock wettability to gas-wetting, then decreasing the friction drag between liquids and rocks surface. Thereby, the emulsion treatment could increase the flowback rate of trapped liquids. Experimental results were in good agreement with the theoretical analysis. In conclusion, all results indicated that the emulsion could alter the wettability from water-wet to intermediate gas-wet and enhance water permeability in porous media. It was extrapolated that the emulsion had the tremendous potential to be applied in field conditions, enhancing gas productivity through the cleanup of trapped water in the vicinity of the wellbore.  相似文献   

14.
Multiphase flows in porous media are encountered in several contexts—e.g., hydrocarbon recovery operations, battery electrodes, microfluidic devices, etc. Capillary-dominated flows are interesting due to the complex interplay of interfacial properties and pore geometries. Conventional hydrodynamic flow solvers are computationally inefficient in the capillary-dominated regime, particularly in complex pore structures. The algorithm developed here specifically targets this regime to reduce simulation times. We minimise the fluid–fluid and fluid–solid interaction energies through an approach inspired by the ferromagnetic Ising model. We validate the algorithm on (1) model pore geometries with analytical solutions for capillary action, and (2) rocks with available mercury porosimetry data. We validate its predictions for model geometries and sandstones using (1) curvatures calculated from theories developed by Mayer–Stowe–Princen, Ma and Morrow, and Mason and Morrow; (2) predictions from GeoDict, a commercial software package, which also includes a state-of-the-art drainage simulator; (3) mercury porosimetry data. Drainage capillary pressure curves predicted for Bentheimer and Fontainebleau rocks reasonably match porosimetry data.  相似文献   

15.
In this paper, the macroscopic equations of mass and momentum are developed and discretized based on the smoothed particle hydrodynamics (SPH) formulation for the interaction at an interface of flow with porous media. The theoretical background of flow through porous media is investigated to highlight the key constraints that should be satisfied, particularly at the interface between the porous media flow and the overlying free flow. The study aims to investigate the derivation of the porous flow equations, computation of the porosity, and treatment of the interfacial boundary layer. It addresses weak assumptions that are commonly adopted for interfacial flow simulation in particle-based methods. As support to the theoretical analysis, a two-dimensional weakly compressible SPH model is developed based on the proposed interfacial treatment. The equations in this model are written in terms of the intrinsic averages and in the Lagrangian form. The effect of particle volume change due to the spatial change of porosity is taken into account, and the extra stress terms in the momentum equation are approximated by using Ergun's equation and the subparticle scale model to represent the drag and turbulence effects, respectively. Four benchmark test cases covering a range of flow scenarios are simulated to examine the influence of the porous boundary on the internal, interface, and external flows. The capacity of the modified SPH model to predict velocity distributions and water surface behavior is fully examined with a focus on the flow conditions at the interfacial boundary between the overlying free flow and the underlying porous media.  相似文献   

16.
More and more biomolecules are being produced by the biotechnology industry for applications ranging from medicine and food to engineering materials. Liquid chromatography plays a center-stage role in a typical downstream process producing biomolecules such as recombinant proteins. Rigid gigaporous media are porous particles possessing large transecting through-pores with a pore-to-particle diameter ratio of dpore/dparticle〉 0.01. They allow convective flow in the large through-pores, while the smaller diffusion-pores (typically several hundred angstroms in size) supply the needed surface areas. Because of the transecting gigapores, a portion of the mobile phase flows through the pores in addition to fluid flow in the interstitial spaces between the particles in a packed-bed column. This considerably lowers the operating column pressure drop. This lower pressure drop makes axial-direction scale-up of chromatographic columns possible to avoid pancake columns that invariably degrade separation resolution. The large gigapores also make the binding sites on the diffusion pore surfaces more accessible, thus increasing the loading capacity of large protein molecules that can be hindered sterically if only diffusion pores are present. This work discusses the development of rigid gigaporous media and their potential impact on the design of multi-stage downstream process from the angle of multi-scale analysis.  相似文献   

17.
18.
将多孔介质简化为一簇变截面毛管束,根据多孔介质的颗粒直径、颗粒排列方式、孔喉尺度比及束缚水饱和度,计算出变截面毛细管的喉道半径和孔隙半径. 在考虑多孔介质喉道和孔隙中单个气泡的受力和变形基础上,利用动量守恒定理,推导出单个孔隙单元内液相的压力分布和孔隙单元两端的压差计算公式,最终得到多孔介质的压力分布计算公式. 利用长U型填砂管对稳定泡沫的流动特性进行了实验研究. 研究结果表明:稳定泡沫流动时多孔介质中的压力分布呈线性下降,影响泡沫在多孔介质中流动特性的因素包括:多孔介质的孔喉结构、泡沫流体的流量和干度、气液界面张力、气泡尺寸,其中孔喉结构和泡沫干度是影响泡沫封堵能力的主要因素.关键词: 稳定泡沫;多孔介质;变截面毛管;流动;表观粘度;压力分布;实验研究   相似文献   

19.
20.
We develop a new approach, which we term Darcian Dynamics, to simulate two-phase (liquid-gas) flow in porous media, when the gas phase is disconnected in the form of ganglia. The method is based on the assumption of homogeneous fluid flow for the liquid, although it does allow for heterogeneous capillary thresholds due to the pore microstructure. Using techniques from potential theory, the hydrodynamic interaction between liquid and gas is expressed through an integral representation over the ganglia interfaces. We use a numerical method to solve the resulting integral equation, and explore conditions for the onset of ganglia mobilization as well as for subsequent events, such as break-up, coalescence and stranding. The interaction between the ganglia and the flowing phase is influenced by the capillary and gravity (Bond) numbers, and by geometric factors, such as size, orientation, and ganglia density. The latter effect depends on the hydrodynamic interaction in addition to the intuitively expected crowding effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号