首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticles of titania and copper-loaded titania were synthesized by a refined sol-gel method using titanium butoxide. Unlike the conventional sol-gel procedure of adding water directly, the esterification of anhydrous butanol and glacial acetic acid provided the hydrolyzing water. In addition, acetic acid also served as a chelating ligand to stabilize the hydrolysis-condensation process and minimize the agglomeration of titania. Following the hydrolysis, Cu/TiO2 was prepared by adding copper chloride to titania sol. The sol was dried, then calcined at 500°C to remove organics and transformed to anatase titania which was verified by XRD. Cu/TiO2 was further hydrogen-reduced at 300°C. The recovery of Ti was exceeded by an average of 95% from titanium butoxide. TEM micrographs show that the Cu/TiO2 particles are near uniform. The average crystallite sizes are 17–20 nm estimated from the peak broadening of XRD spectra. The bandgaps of TiO2 and reduced Cu/TiO2 range from 2.70 to 3.15 eV estimated from the diffusive reflective UV-Vis spectra. XPS analysis shows that Cu 2p3/2 is 933.4 eV indicating primary Cu2O form on the TiO2 supports. The binding energy of Ti does not exhibit chemical shift suggesting negligible interaction of Cu cluster and TiO2 support.  相似文献   

2.
Composite photocatalysts composed of TiO2 and ZrO2 have been prepared via the sol-gel method. The as-prepared nanocomposites are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectrometry and fluorescence emission spectra. The results shows that TiO2/ZrO2 nanocomposites are composed of mainly anatase titania and tetragonal ZrO2. Incorporating TiO2 particles with ZrO2 plays an important role in promoting the formation of nanoparticles with an anatase structure and leads to decreased fluorescence emission intensity. Most of the TiO2/ZrO2 nanocomposites exhibited comparable photocatalytic activity compared with commercial TiO2 for the degradation aqueous methyl orange (MO) under ultraviolet irradiation, while the composite with Zr/Ti mass ratio of 15.2% shows the highest photocatalytic performances. Furthermore, the as-prepared nanocomposites can be reused with little photocatalytic activity loss. Without any further treatment besides rinsing, the photocatalytic activity of TiO2/ZrO2 (15.2%) composites is still higher than after five-cycle utilization.  相似文献   

3.
We perform first-principles calculations to investigate the band structure, density of states, optical absorption, and the imaginary part of dielectric function of Cu, Ag, and Au-doped anatase TiO2 in 72 atoms systems. The electronic structure results show that the Cu incorporation can lead to the enhancement of d states near the uppermost of valence band, while the Ag and Au doping cause some new electronic states in band gap of TiO2. Meanwhile, it is found that the visible optical absorptions of Cu, Ag, and Au-doped TiO2, are observed by analyzing the results of optical properties, which locate in the region of 400-1000 nm. The absorption band edges of Cu, Ag, and Au-doped TiO2 shift to the long wavelength region compared with the pure TiO2. Furthermore, according to the calculated results, we propose the optical transition mechanisms of Cu, Ag, and Au-doped TiO2. Our results show that the visible light response of TiO2 can be modulated by substitutional doping of Cu, Ag, and Au.  相似文献   

4.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

5.
Three Cu/ZnO/ZrO2/Al2O3 methanol reforming catalysts were investigated using X-ray photoelectron spectroscopy (XPS). The catalysts which contained ZrO2 from a monoclinic nanoparticle ZrO2 precursor exhibit both a higher activity toward the methanol steam reforming reaction and a lower CO production rate compared to catalysts composed of an XRD-amorphous ZrO2 produced by impregnation using a Zr(NO3)2 precursor. The presence of a monoclinic phase appears to result in an increased charge transfer between the Zr and Cu species, as evidenced by a relatively electron-rich ZrO2 phase and a partially oxidized Cu species on reduced catalysts. This electron deficient Cu species is more reactive toward the methanol reforming reaction and partially suppresses CO formation through the reverse water gas shift or methanol decomposition reactions.  相似文献   

6.
T. Kawai  Y. Kishimoto  K. Kifune 《哲学杂志》2013,93(33):4088-4097
Photoluminescence and excitation spectra have been investigated for undoped and nitrogen-doped TiO2 powders at low temperatures. A broad luminescence band peaking at 2.25?eV is observed in the undoped TiO2 powders. The 2.25?eV luminescence band exhibits a sharp rise from 3.34?eV in the excitation spectrum reflecting the fundamental absorption edge of anatase TiO2. On the other hand, the N-doped TiO2 powders obtained by annealing with urea at 350 and 500°C exhibit broad luminescence bands around 2.89 and 2.63?eV, respectively. The excitation spectra for these luminescence bands rise from the lower energy side of the fundamental absorption edge of anatase TiO2. The origin of the luminescence bands and N-related energy levels formed in the band-gap of TiO2 are discussed.  相似文献   

7.
低温陈化超声波共沉淀法制得SO42-/ZrO2-La2O3前驱体, 经H2SO4处理, 在不同温度下焙烧得到纳米晶催化剂SO42-/ZrO2-La2O3;用Hammett指示剂法测定其酸性. 用XRD、BET、TEM、IR和XPS对样品进行表征,其催化活性用醋酸和甘油的酯化反应进行了评价. 结果表明经超声波搅拌和低温(-15 ºC)陈化,650 ºC焙烧4 h得到的固体超强酸表现出较高催化活性.  相似文献   

8.
By dipping-lifting in sol-gel solution and reducing process, the graphene/TiO2 composite film on the glass plate was first prepared. Then, the Ag/graphene/TiO2 composite film was fabricated by interface reaction with AgNO3 and N2H4·H2O on the surface of graphene/TiO2 composite film. The characterization results show that the uniform porous TiO2 film is made up of the anatase crystal, and the Ag/graphene/TiO2 composite film is constructed by doping or depositing graphene sheets and Ag nanoparticles on the surface of TiO2 film. The photoelectrochemical measurement results indicate that the Ag/graphene/TiO2 composite film has an excellent photoelectrochemical conversion property.  相似文献   

9.
Li2O–Al2O3–ZrO2–SiO2 glasses mixed with different concentrations of TiO2 (ranging from 0 to 5.0?mol%) were synthesised and their dielectric properties (dielectric constant, loss tan?δ, a.c. conductivity σ) investigated over wide ranges of frequency and temperature. Studies of optical absorption, ESR, infrared (IR) and photoluminescence properties have also been undertaken. A decrease in dielectric parameters with increasing concentrations of TiO2 has been observed and this is attributed to an increasing proportion of titanium ions occupying network-forming positions rather than going into interstitial positions. A.C. conductivity in the high-temperature region appears to be connected both to electronic transfer and ionic movements, but conduction attributed to such processes seems to be hampered by the entry of titanium ions into the network-forming positions. Analysis of the results of the IR spectral studies have indicated that there is a decreasing degree of disorder in the glass network with increasing TiO2 content. The optical absorption and ESR spectral studies have revealed that titanium ions exist in both Ti3+ and Ti4+ states in the glasses. Luminescence spectra exhibited an emission band in the visible region and the luminescence efficiency increased with TiO2 content. The excitation of substitutionally positioned octahedral Ti4+ ions is identified as being responsible for the observed luminescence emission.  相似文献   

10.
ABSTRACT

Metal-free catalysts have attracted more attention due to their highly active in catalytic oxidation reactions. The electronic structure and catalytic property of BC3 sheet are investigated by using first-principles calculations. It is found that the BC3 sheet as the active surface can effectively regulate the adsorptive stability of reactive gases. Besides, the possible reaction processes for CO oxidation on the BC3 sheet are comparably analysed through different reaction mechanisms, which include the Eley–Rideal (ER), Langmuir–Hinshelwood (LH) and termolecular Eley–Rideal (TER). In the CO oxidation reactions, the decomposition of O2 molecule as the starting state (0.40?eV) is an energetically more favourable process than those of other processes, the Eley–Rideal (ER) reactions (2Oads+2CO→CO2) are more prone to take place with lower energy barriers (3 sheet. These results provide an important guidance on exploring the highly efficiency metal-free catalyst for CO oxidation.  相似文献   

11.
Y.J. Guo  X.T. Zu  X.D. Jiang  H.B. Lv 《Optik》2011,122(13):1140-1142
Sol-gel (ZrO2/SiO2)12 ZrO2 films were prepared by spin coating method. The reflectivity spectrum of the films was measured with a Lambda 900 spectrometer. In order to investigate laser-induced damage threshold (LIDT) characteristic of highly reflective films, one-layer ZrO2 and SiO2 films, two-layer ZrO2/SiO2 and SiO2/ZrO2 films were also prepared by spin coating method. LIDT of each film was measured. Damage morphology after laser irradiation was characterized by optical microscopy (Nikon E600K). The experimental results showed that the reflectivity of (ZrO2/SiO2)12 ZrO2 film at 1064 nm and 355 nm wavelength is 99.7%. The LIDT results decreases as the number of layer of films increases. All the films have similar damage morphology. The experimental results are explained by the different temperature profiles of the films.  相似文献   

12.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

13.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

14.
Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films were prepared by an easy and cost effective dip coating method. Al/PVA–TiO2/Al and Al/PMMA–TiO2/Al sandwich structures were prepared to study the dielectric behavior. The presence of metal–oxide (Ti–O) bond in the prepared films was confirmed by Fourier transform infrared spectroscopy. X-ray diffraction pattern indicated that the prepared films were predominantly amorphous in nature. Scanning electron micrographs showed cluster of TiO2 nanoparticles distributed over the film surface and also there were no cracks and pin holes on the surface. The transmittance of the films was above 80% in the visible region and the optical band gap was estimated to be about 3.77 eV and 3.78 eV respectively for PVA–TiO2 and PMMA–TiO2 films by using Tauc's plot. The determined refractive index (n) values were between 1.6 and 2.3. High value of dielectric constant (?′ = 24.6 and ?′ = 26.8) was obtained for the prepared composite films. The conduction in the composite films was found to be due to electrons. The observed amorphous structure, good optical properties and dielectric behavior of the prepared nano composite thin films indicated that these films could be used in opto-electronic devices and in thin film transistors.  相似文献   

15.
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO2), TA (bottom layer was pure TiO2, surface layer was Ag modified), TT (pure TiO2 thin film) and AA (TiO2 thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (Iph). LSV confirmed the existence of Ag0 state in the TiO2 thin film. SEM and XRD experiments indicated that the sizes of the TiO2 nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.  相似文献   

16.
The nano-structured Fe(III)-doped TiO2 photocatalysts with anatase phase have been developed for the oxidation of non-biodegradable different organic dyes like methyl orange (MO), rhodamine B (RB), thymol blue (TB) and bromocresol green (BG) using UV-Hg-lamp. The different compositions of FexTi1−xO2 (x = 0.005, 0.01, 0.05, and 0.1) nanocatalysts synthesized by chemical method (CM), have been characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra, specific surface area (BET), transmission electronic microscopy (TEM) analysis, XPS, ESR and zeta potential. From XRD analysis, the results indicate that all the compositions of Fe(III) doped in TiO2 catalysts gives only anatase phase not rutile phase. For complete degradation of all the solutions of the dyes (MO, RB, TB, and BG), the composition with x = 0.005 is more photoactive compared all other compositions of FexTi1−xO2, and degussa P25. The decolorization rate of different dyes decreases as Fe(III) concentration in TiO2 increases. The energy band gap of Fe(III)-doped TiO2 is found to be 2.38 eV. The oxidation state of iron has been found to be 3+ from XPS and ESR show that Fe3+ is in low spin state.  相似文献   

17.
Abstract

It is shown that heavy atom disorder resulting from Y ? Ba, Ba ? Cu and Y ? Cu interchanges due to local stoichiometric constraints can cause significant changes in the intensities of X-ray powder diffraction lines of YBa2Cu3O7-y . A comparison of the theoretically predicted intensities with published patterns for specimens prepared by the conventional dry route reveals that Ba ? Cu interchanges involving copper atoms in the CuO2 planes can occur quite frequently and may be mistaken for (00l) texture.  相似文献   

18.
Zirconium oxide nanoparticle (ZrO2) is synthesized by the hydrothermal method at different calcination temperatures. The structural analysis is carried out by X-ray diffraction and Raman spectra. The sample prepared at 400 °C and 1100 °C showed the cubic and monoclinic phase, respectively, and the sample calcined at 600 °C and 800 °C showed the mixed phase with co-existence of cubic and monoclinic phases. Furthermore, the morphology and particle size of these samples were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. The band gap estimated from UV–Vis spectra of ZrO2 (zirconia) nanocrystalline materials calcined at different temperatures from 400 °C to 1100 °C was in the range of 2.6–4.2 eV. The frequency dependence of dielectric constant and dielectric loss was investigated at room temperature. The low frequency region of dielectric constant is attributed to space charge effects.  相似文献   

19.
Yttria-tetragonal zirconia polycrystal (Y-TZP) ceramic with hydroxyapatite (HA) coating has been recognized as one of the most common biomaterials. However, its lower interfacial bonding strength has restricted its clinical application. In this study, CaCO3, Ca3(PO4)2 (TCP), and Ag were added into the interface of the HA coating and Y-TZP substrate by a pressureless sintering process to increase interfacial bonding strength. The morphology and microstructure of the interlayers were analyzed by scanning electronic microscope. The results show that the comprehensive performances of HA/interlayer/ZrO2 biomaterials were much better than that of the sample without interlayer, and the shear and tensile strengths of the HA/CaCO3/ZrO2 biomaterial reached 15.19 and 16.88 MPa, respectively, which were higher than those of TCP and Ag. The CaZrO3 and carbonated apatite, formed by decomposed products of CaCO3 and HA reacting with ZrO2 at the interface under sintering, increased the mechanical properties of the biomaterial.  相似文献   

20.
Cu2S thin films deposited on glass substrate by chemical bath deposition were studied at different deposition temperatures and times. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), the Hall Effect measurement system and UV-Vis absorption spectroscopy indicate that both deposition temperature and time are important to obtain polycrystalline thin films. XRD showed that the polycrystalline Cu2S thin films have monoclinic structure. Meanwhile, the structural variations were analyzed using SEM. EDX analysis results of the thin film showed that the atomic ratio of Cu/S was close to 2:1. It was found from the Hall Effect measurement that the resistivity varied from 4.59?×?10?3 to 13.8?×?10?3 (Ω?cm). The mobility values of the Cu2S thin films having p-type conductivity varied from 15.16 to 134.6?cm2/V.s. The dark electrical resistivity measurements were studied at temperatures in the range 303–423?K. The electrical activation energies of Cu2S thin films were calculated by using Arrhenius plots, from which two different activation energy values are estimated for each thin film. Using UV-Vis absorption spectroscopy (Ultraviolet/visible), the direct and indirect allowed optical band gap values were determined to lie between 2.16 and 2.37?eV and 1.79 and 1.99?eV, respectively. In addition, the values of the refractive index (n) and the extinction coefficient (k) were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号