首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic cations (26), M+, have been shown to lie within a thermodynamic window for O-atom transport catalysis of the reduction of N2O by CO and have been checked for catalytic activity at room temperature with kinetic measurements using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Only 10 of these 26 atomic cations were seen to be catalytic: Ca+, Fe+, Ge+, Sr+, Ba+, Os+, Ir+, Pt+, Eu+, and Yb+. The remaining 16 cations that lie in the thermodynamic window (Cr+, Mn+, Co+, Ni+, Cu+, Se+, Mo+, Ru+, Rh+, Sn+, Te+, Re+, Pb+, Bi+, Tm+, and Lu+) react too slowly at room temperature either in the formation of MO+ or in its reduction by CO. Many of these reactions are known to be spin forbidden and a few actually may lie outside the thermodynamic window. A new measure of efficiency is introduced for catalytic cycles that allows the discrimination between catalytic cations on the basis of the efficiencies of the two legs of the catalytic cycle. Also, a potential-energy landscape is computed for the reduction of N2O by CO catalyzed by Fe+(6D) that vividly illustrates the operation of an ionic catalyst.  相似文献   

2.
Reactions of CH(3)F have been surveyed systematically at room temperature with 46 different atomic cations using an inductively coupled plasma/selected-ion flow tube tandem mass spectrometer. Rate coefficients and product distributions were measured for the reactions of fourth-period atomic ions from K(+) to Se(+), of fifth-period atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of sixth-period atomic ions from Cs(+) to Bi(+). Primary reaction channels were observed corresponding to F atom transfer, CH(3)F addition, HF elimination, and H(2) elimination. The early-transition-metal cations exhibit a much more active chemistry than the late-transition-metal cations, and there are periodic features in the chemical activity and reaction efficiency that maximize with Ti(+), As(+), Y(+), Hf(+), and Pt(+). F atom transfer appears to be thermodynamically controlled, although a periodic variation in efficiency is observed within the early-transition-metal cations which maximizes with Ti(+), Y(+), and Hf(+). Addition of CH(3)F was observed exclusively (>99%) with the late-fourth-period cations from Mn(+) to Ga(+), the fifth-period cations from Ru(+) to Te(+), and the sixth-period cations from Hg(+) to Bi(+) as well as Re(+). Periodic trends are observed in the effective bimolecular rate coefficient for CH(3)F addition, and these are consistent with expected trends in the electrostatic binding energies of the adduct ions and measured trends in the standard free energy of addition. HF elimination is the major reaction channel with As(+), while dehydrogenation dominates the reactions of W(+), Os(+), Ir(+), and Pt(+). Sequential F atom transfer is observed with the early-transition-metal cations, with the number of F atoms transferred increasing across the periodic table from two to four, maximizing at four for the group 5 cations Nb(+)(d(4)) and Ta(+)(d(3)s(1)), and stopping at two with V(+)(d(4)). Sequential CH(3)F addition was observed with many atomic cations and all of the metal mono- and multifluoride cations that were formed.  相似文献   

3.
4.
The reactions of 46 atomic-metal cations with CS2 have been investigated at room temperature using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Rate coefficients and products were measured for the reactions of fourth-period atomic ions from K+ to Se+, of fifth-period atomic ions from Rb+ to Te+ (excluding Tc+), and of sixth-period atomic ions from Cs+ to Bi+. Primary reaction channels were observed leading to S-atom transfer, CS2 addition and, with Hg+, electron transfer. S-atom transfer appears to be thermodynamically controlled and occurs exclusively, and with unit efficiency, in the reactions with most early transition-metal cations (Sc+, Ti+, Y+, Zr+, Nb+, La+, Hf+, Ta+, and W+) and with several main-group cations (As+, Sb+) and less efficiently with Se+, Re+ and Os+. Other ions, including most late transition and main-group metal cations, react with CS2 with measurable rates mostly through CS2 addition or not at all (K+, Rb+, Cs+). Traces of excited states (< 10%) were seen from an inspection of the observed product ions to be involved in the reactions with Mo+, Te+, Ba+ and Au+ and possibly Pt+ and Ir+. The primary products YS+, ZrS+, NbS+, HfS+, TaS+, WS+, ReS+ and OsS+ react further by S-atom transfer to form MS2(+), and TaS2(+) reacts further to form TaS3(+). CS2 addition occurs with the cations MCS2(+), MS+, MS2(+), CS2(+), and TaS3(+) to form M+(CS2)(n) (n < or = 4), MS+(CS2)(n) (n < or = 4), MS2(+)(CS2)(n) (n < or = 3), (CS2)2(+) and TaS3(+)(CS2). Up to four CS2 molecules add sequentially to bare metal cations and monosulfide cations, and three to disulfide cations. Equilibrium constant measurements are reported that provide some insight into the standard free energy change for CS2 ligation. Periodic variations in deltaG degrees are as expected from the variation in electrostatic attraction, which follows the trend in atomic-ion size and the trend in repulsion between the orbitals of the atomic cations and the occupied orbitals of CS2.  相似文献   

5.
The chemistry of carbon dioxide has been surveyed systematically with 46 atomic cations at room temperature using an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. The atomic cations were produced at ca. 5500 K in an ICP source and allowed to cool radiatively and to thermalize by collisions with Ar and He atoms prior to reaction downstream in a flow tube in helium buffer gas at 0.35 +/- 0.01 Torr and 295 +/- 2 K. Rate coefficients and products were measured for the reactions of first-row atomic ions from K(+) to Se(+), of second-row atomic ions from Rb(+) to Te(+) (excluding Tc(+)), and of third-row atomic ions from Cs(+) to Bi(+). CO(2) was found to react in a bimolecular fashion by O atom transfer only with 9 early transition-metal cations: the group 3 cations Sc(+), Y(+), and La(+), the group 4 cations Ti(+), Zr(+), and Hf(+), the group 5 cations Nb(+) and Ta(+), and the group 6 cation W(+). Electron spin conservation was observed to control the kinetics of O atom transfer. Addition of CO(2) was observed for the remaining 37 cations. While the rate of addition was not measurable some insight was obtained into the standard free energy change, DeltaG(o), for CO(2) ligation from equilibrium constant measurements. A periodic variation in DeltaG(o) was observed for first row cations that is consistent with previous calculations of bond energies D(0)(M(+)-CO(2)). The observed trends in D(0) and DeltaG(o) are expected from the variation in electrostatic attraction between M(+) and CO(2) which follows the trend in atomic-ion size and the trend in repulsion between the orbitals of the atomic cations and the occupied orbitals of CO(2). Higher-order CO(2) cluster ions with up to four CO(2) ligands also were observed for 24 of the atomic cations while MO(2)(+) dioxide formation by sequential O atom transfer was seen only with Hf(+), Nb(+), Ta(+), and W(+).  相似文献   

6.
用浸渍法制备了系列Ir催化剂, 研究了富氧条件下Ir催化NO的反应, 考察了催化剂的催化反应性能及负载量和载体对催化活性的影响. 结果表明, 在Ir催化剂上不仅发生了NO氧化反应, 同时也发生了NO还原反应; Ir催化剂对NO反应有催化作用, 催化活性随Ir负载量的增加而增强. 载体对催化剂活性有一定的影响, 负载量低于0.1%(w)时, 催化NO氧化的活性顺序为Ir/ZSM-5>Ir/γ-Al2O3>Ir/SiO2, 这主要受载体自身性质的影响; 负载量高于0.1%时, 催化NO氧化的活性顺序为Ir/ZSM-5>Ir/SiO2>Ir/γ的活性顺序为Ir/γ-Al2O3>Ir/SiO2>Ir/ZSM-5, 这主要由于载体吸附作用促进了NO2在Ir催化剂上吸附分解. 与Pt催化剂相比, Ir催化剂更有利于促进NO还原.  相似文献   

7.
Fourier transform ion cyclotron resonance mass spectrometry was employed to study the products and kinetics of gas-phase reactions of Cm (+) and Cm (2+); parallel studies were carried out with La (+/2+), Gd (+/2+) and Lu (+/2+). Reactions with oxygen-donor molecules provided estimates for the bond dissociation energies, D[M (+)-O] (M = Cm, Gd, Lu). The first ionization energy, IE[CmO], was obtained from the reactivity of CmO (+) with dienes, and the second ionization energies, IE[MO (+)] (M = Cm, La, Gd, Lu), from the rates of electron-transfer reactions from neutrals to the MO (2+) ions. The following thermodynamic quantities for curium oxide molecules were obtained: IE[CmO] = 6.4 +/- 0.2 eV; IE[CmO (+)] = 15.8 +/- 0.4 eV; D[Cm-O] = 710 +/- 45 kJ mol (-1); D[Cm (+)-O] = 670 +/- 40 kJ mol (-1); and D[Cm (2+)-O] = 342 +/- 55 kJ mol (-1). Estimates for the M (2+)-O bond energies for M = Cm, La, Gd, and Lu are all intermediate between D[N 2-O] and D[OC-O] - that is, 167 kJ mol (-1) < D[M (2+)-O] < 532 kJ mol (-1) - such that the four MO (2+) ions fulfill the thermodynamic requirement for catalytic oxygen-atom transport from N2O to CO. It was demonstrated that the kinetics are also favorable and that the CmO (2+), LaO (2+), GdO (2+), and LuO (2+) dipositive ions each catalyze the gas-phase oxidation of CO to CO2 by N2O. The CmO 2 (+) ion appeared during the reaction of Cm (+) with O 2 when the intermediate, CmO (+), was not collisionally cooled - although its formation is kinetically and/or thermodynamically unfavorable, CmO 2 (+) is a stable species.  相似文献   

8.
The surface properties of bimetallic Ni-Pt/SiO2 catalysts with variable Ni/Ni + Pt atomic ratio (0.75, 0.50, and 0.25) were studied using N2O decomposition and N2O reduction by hydrogen reactions as probes. Catalysts were prepared by incipient wetness impregnation of the silica support with aqueous solutions of the metal precursors to a total metal loading of 2 wt %. For both model reactions, Pt/SiO2 catalyst was substantially more active than Ni/SiO2 catalyst. Mean particle size by TEM was about the same (in the range 6-8 nm) for all catalysts and truly bimetallic particles (more than 95%) were evidenced by EDS in the Ni-Pt/SiO2 catalysts. CO adsorption on the bimetallic catalysts showed differences in the linear CO absorption band as a function of the Ni/Pt atomic ratio. Bimetallic Ni-Pt/SiO2 catalysts showed, for the N2O decomposition, a catalytic behavior that points out an ensemble-size sensitive behavior for Ni-rich compositions. For the N2O + H2 reaction, the bimetallic catalysts were very active at low temperature. The following activity order at 300 K was observed: Ni75Pt25 > Ni25Pt75 approximately Ni50Pt50 > Pt. TOF values for these catalysts increased 2-5 times compared to the most active reference catalyst (Pt/SiO2). The enhancement of the activity in the Ni75Pt25 bimetallic catalysts is explained in terms of the presence of mixed Ni-Pt ensembles.  相似文献   

9.
Transition metal oxide cations of the form M n O m (+) (M = Y, La) are produced by laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. Cluster oxides for each value of n form only a limited number of stoichiometries; MO(M2O3)x(+) species are particularly intense. Cluster cations are mass selected and photodissociated using the third harmonic (355 nm) of a Nd:YAG laser. Multiphoton excitation is required to dissociate these clusters because of their strong bonding. Yttrium and lanthanum oxides exhibit different dissociation channels, but some common trends can be identified. Larger clusters for both metals undergo fission to make certain stable cation clusters, especially MO(M2O3) x (+) species. Specific cations are identified to be especially stable because of their repeated production in the decomposition of larger clusters. These include M3O4(+), M5O7(+), M7O10(+), and M9O13(+), along with Y6O8(+). Density functional theory calculations were performed to investigate the relative stabilities and structures of these systems.  相似文献   

10.
The gas-phase Fe(+)-mediated oxidation of acetylene by N2O on both sextet and quartet potential energy surfaces (PESs) is theoretically investigated using density functional theory. Geometries and energies of all the stationary points involved in the catalytic reaction are located. For the catalytic cycles, the crucial step is the initial N2O reduction by Fe(+) to form FeO(+), in which a direct O-abstraction mechanism is located on the sextet PES, whereas the quartet pathway favors a N-O insertion mechanism. Spin inversion moves the energy barrier for this process downward to a position below the ground-state entrance channel. The second step of the catalytic cycles involves two mechanisms corresponding to direct hydrogen abstraction and cyclization. The former mechanism accounts for the ethynol formation with the upmost activation barrier below the entrance channel by about 5 kcal/mol. The other mechanism involves a "metallaoxacyclobutene" structure, followed by four possible pathways, i.e., direct dissociation, C-C insertion, C-to-O hydrogen shift, and/or C-to-C hydrogen shift. Among these pathways, strong exothermicities as well as energetically low location of the intermediates suggest oxidation to ketene and carbon monoxide along the C-to-C hydrogen shift pathway is the most favorable. Reduction of the CO loss partner FeCH2(+) by another N2O molecule constitutes the third step of the catalytic cycles, which contains direct abstraction of O from N2O giving OFeCH2(+), intramolecular rearrangement to form Fe(+)-OCH2, and nonreactive dissociation. This reaction is also energetically favored considering the energy acquired from the initial reactants.  相似文献   

11.
Regioselective hydrogenation of the oxidized form of β-nicotinamide adenine dinucleotide (NAD(+)) to the reduced form (NADH) with hydrogen (H(2)) has successfully been achieved in the presence of a catalytic amount of a [C,N] cyclometalated organoiridium complex [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H(2)O)](2) SO(4) [1](2)·SO(4) under an atmospheric pressure of H(2) at room temperature in weakly basic water. The structure of the corresponding benzoate complex Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))-benzoate-κC(3))(H(2)O) 2 has been revealed by X-ray single-crystal structure analysis. The corresponding iridium hydride complex formed under an atmospheric pressure of H(2) undergoes the 1,4-selective hydrogenation of NAD(+) to form 1,4-NADH. On the other hand, in weakly acidic water the complex 1 was found to catalyze the hydrogen evolution from NADH to produce NAD(+) without photoirradiation at room temperature. NAD(+) exhibited an inhibitory behavior in both catalytic hydrogenation of NAD(+) with H(2) and H(2) evolution from NADH due to the binding of NAD(+) to the catalyst. The overall catalytic mechanism of interconversion between NADH and NAD(+) accompanied by generation and consumption of H(2) was revealed on the basis of the kinetic analysis and detection of the catalytic intermediates.  相似文献   

12.
Reactions of the third-row transition metal cation Os(+) with H(2), D(2), and HD to form OsH(+) (OsD(+)) were studied using a guided ion beam tandem mass spectrometer. A flow tube ion source produces Os(+) in its (6)D (6s(1)5d(6)) electronic ground state level. Corresponding state-specific reaction cross sections are obtained. The kinetic energy dependences of the cross sections for the endothermic formation of OsH(+) and OsD(+) are analyzed to give a 0 K bond dissociation energy of D(0)(Os(+)-H) = 2.45 ± 0.10 eV. Quantum chemical calculations are performed here at several levels of theory, with B3LYP approaches generally overestimating the experimental bond energy whereas results obtained using BHLYP and CCSD(T), coupled-cluster with single, double, and perturbative triple excitations, levels show good agreement. Theory also provides the electronic structures of these species and the potential energy surfaces for reaction. Results from the reactions with HD provide insight into the reaction mechanism and indicate that Os(+) reacts via a direct reaction. We also compare this third-row transition metal system with the first-row and second-row congeners, Fe(+) and Ru(+), and find that Os(+) reacts more efficiently with dihydrogen, forming a stronger M(+)-H bond. These differences can be attributed to the lanthanide contraction and relativistic effects.  相似文献   

13.
Pt催化剂是电催化领域用途最为广泛的贵金属催化剂.Pt资源稀缺,价格昂贵,同时它的物理化学特性又决定了其在多种催化反应中难以被替代.在质子交换膜燃料电池的小分子醇类电氧化过程中,难免存在Pt的毒化现象,其催化性能有待进一步提升.因此,围绕着Pt催化剂纳米结构的设计、抗毒性及反应机理的探索一直是电催化研究面临的重要课题.目前,已被广泛认可的提高Pt催化性能的方法之一是引入第二种金属,通过金属间协同效应(双功能机理)、张力效应或电子效应等对Pt的催化行为进行改性.对于由双/多金属组成的纳米结构催化剂,无论是协同效应还是电子效应,催化活性的提高都需要金属间有丰富的接触界面和恰当的邻近状态.通过调变两组元的种类、原子比和接触状态等可以实现对金属-金属界面的调控,进而调变催化剂性能.除金属助剂外,金属氧化物对Pt催化剂的助催化作用也引起广泛关注.由于金属氧化物与Pt之间的密切接触作用,氧化物的形貌特点对Pt的催化性能可产生重要影响.到目前为止,有关催化剂形貌效应的研究主要集中于贵金属纳米颗粒上(Pt,Au,Pd等),但关于金属氧化物载体/助剂的形貌对贵金属催化性能影响的研究尚不多.具有明确形貌的金属氧化物载体/助剂,暴露的晶面不同,表面原子的配位状态也不同,从而造成与之密切接触的Pt的性质发生改变.因此,金属氧化物的表面性质以及Pt-金属氧化物的界面性质将对电催化性能产生重要影响,深入阐释贵金属-金属氧化物的表/界面性质以及建立有效的构效关系,对设计和制备高效电催化剂具有一定的指导意义.为了提高Pt基催化剂活性、抗CO中毒能力以及稳定性,本文采用共沉淀法和水热法分别制备了纳米棒和六边形纳米片状的Fe2O3作为Pt催化剂的助剂,考察了助剂形貌对Pt催化剂在碱性介质中催化氧化甲醇的促进作用.通过X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱以及电化学技术对催化剂进行了表征.结果显示,Fe2O3的存在能显著提高Pt催化剂在碱性介质中对甲醇氧化的电催化性能,而且以Fe2O3纳米棒为助剂制备的Pt-Fe2O3/C-R催化剂催化活性以及稳定性比Fe2O3纳米片为助剂制备的Pt-Fe2O3/C-P催化剂更高.这种促进效应可能与助剂Fe2O3的形态有关.Pt-Fe2O3/C-R催化剂中Pt的质量比活性为5.32 A/mgPt,本征活性为162.7 A/m2Pt,分别是Pt-Fe2O3/C-P催化剂的1.67和2.04倍,是商业PtRu/C样品的4.19和6.16倍.协同效应和电子效应是Pt催化性能提升的主要原因.此外,Pt-Fe2O3/C-R样品中高价态Pt的含量较高,可能也是加速甲醇氧化反应动力学的原因之一.高价态的Pt可能会增强甲醇分子在Pt表面的吸附强度,促进Pt上甲醇氧化反应初始步.这些发现不仅可对甲醇电催化氧化机理有了更深的理解,而且对设计和制备高性能甲醇氧化电催化剂也具有一定的指导意义.  相似文献   

14.
在已有的关于甲烷催化部分氧化和催化氧化资料的基础上,假设了一个甲烷部分氧化反应的机理,并据此提出了催化剂设计的原则.在分析了O2,CO和H2等在金属表面上的吸附热的基础上,得出如下结论:金属Ni,Pt,Pd,Rh,Ru和Ir可作为甲烷部分氧化催化剂的主要组分,Cu将是最佳助剂,具有较好的氢溢流功能的Al2O3可作为最佳载体  相似文献   

15.
移动甲醇重整制氢是质子交换膜燃料电池(PEMFC)可行的供氢方式之一,包括水蒸气重整、部分氧化重整和自热重整。甲醇重整制氢方法不同,重整气体积组成在H245%~75%,CO215%~25%,CO1%~10%,H2O10%~20%和N20—20%变化。重整气进入PEMFC之前要经过CO水蒸气变换反应(如果采用水蒸气重整,不需要变换过程),  相似文献   

16.
Molecular water-oxidation catalysts can deactivate by side reactions or decompose to secondary materials over time due to the harsh, oxidizing conditions required to drive oxygen evolution. Distinguishing electrode surface-bound heterogeneous catalysts (such as iridium oxide) from homogeneous molecular catalysts is often difficult. Using an electrochemical quartz crystal nanobalance (EQCN), we report a method for probing electrodeposition of metal oxide materials from molecular precursors. Using the previously reported [Cp*Ir(H(2)O)(3)](2+) complex, we monitor deposition of a heterogeneous water oxidation catalyst by measuring the electrode mass in real time with piezoelectric gravimetry. Conversely, we do not observe deposition for homogeneous catalysts, such as the water-soluble complex Cp*Ir(pyr-CMe(2)O)X reported in this work. Rotating ring-disk electrode electrochemistry and Clark-type electrode studies show that this complex is a catalyst for water oxidation with oxygen produced as the product. For the heterogeneous, surface-attached material generated from [Cp*Ir(H(2)O)(3)](2+), we can estimate the percentage of electroactive metal centers in the surface layer. We monitor electrode composition dynamically during catalytic turnover, providing new information on catalytic performance. Together, these data suggest that EQCN can directly probe the homogeneity of molecular water-oxidation catalysts over short times.  相似文献   

17.
Summary Relativistic effective core potential calculations have been carried out for the reactions of Pt, Os, Ir, and Re with H2. The calculations demonstrate the importance of a singly occupied 6s orbital for forming a strong bond. Pt and Ir have low-lying states with such occupancy, whereas Os and Re only attains this through a rather costly excitation. In consequence, the reaction barriers are considerably smaller for Pt and Ir than for Os and Re.  相似文献   

18.
岑丙横  汤岑  鲁继青  陈建  罗孟飞 《催化学报》2021,42(12):2287-2295
贵金属Pt催化剂具有高活性和热稳定性,广泛应用于催化挥发性有机物的完全氧化反应(燃烧反应).短链烷烃(甲烷、乙烷、丙烷等)化学性质稳定,是最难氧化的一类有机物,常用作考察燃烧反应催化剂性能的模型反应物.然而,目前报道的研究工作通常仅限于针对某一种烷烃底物的催化燃烧,系统考察催化剂以及助剂对不同短链烷烃的催化燃烧活性鲜有报道.在短链烷烃中,甲烷只有C–H键;而其它烷烃除了C–H键;还有C–C键.因此,研究催化剂对甲烷、乙烷和丙烷燃烧反应催化性能的差异性,对于认识催化剂上C–H键和C–C键的活化具有非常重要的意义.本文制备了MoO3或Nb2O5修饰的Pt/ZrO2催化剂并用于短链烷烃的燃烧反应.研究发现,MoO3助剂对甲烷燃烧有明显的抑制作用,但对乙烷,丙烷和正己烷燃烧反应具有促进作用,促进作用随着烷烃碳链的增长逐渐增加;Nb2O5助剂对甲烷、乙烷、丙烷和正己烷燃烧反应均具有促进作用,然而促进作用随着碳链的增长而逐渐减弱.MoO3和Nb2O5助剂的不同促进作用与助剂影响催化剂表面酸性以及Pt物种的氧化或还原态有关.NH3-TPD结果表明,MoO3助剂可以显著增加Pt/ZrO2催化剂表面强酸位点数量,而Nb2O5助剂可以显著增加Pt/ZrO2催化剂表面中强酸位点数量.HTEM结果表明,两种助剂的添加都不会明显改变Pt物种的颗粒尺寸.在Pt-Mo/ZrO2催化剂上,MoO3覆盖部分Pt物种形成丰富的Pt-MoO3界面,促进了金属Pt物种和强表面酸性位点的生成,提高了丙烷燃烧反应活性;Pt-Nb/ZrO2催化剂上载体表面的部分Nb2O5被Pt物种包覆,使得生成的表面Pt-Nb2O5界面低于Pt-Mo/ZrO2催化剂,但由于催化剂表面酸性位的提升,也促进了丙烷燃烧反应活性的提高.XPS结果表明,在甲烷燃烧反应中,Pt-Nb/ZrO2催化剂上Ptn+物种能够更加稳定地存在,这可能是Nb2O5助剂提高Pt-Nb/ZrO2催化剂上甲烷燃烧活性的关键.而Pt-Mo/ZrO2催化剂上Ptn+物种在甲烷反应中可以更容易地被还原,并且由于MoO3的包裹导致暴露的Pt位点数量降低,使催化剂催化甲烷燃烧的活性受到抑制.可见,MoO3助剂更有利于C–C键活化,而Nb2O5助剂更有利于高键能的C–H键活化.综上,本文系统性地研究MoO3助剂和Nb2O5助剂对Pt/ZrO2催化剂上不同短链烷烃的燃烧反应的影响,证实了两种助剂的促进作用与碳链长度的关系是截然不同的.  相似文献   

19.
Hydrogen uptake in hydrogenase enzymes can be assayed by H/D exchange reactivity in H(2)/D(2)O or H(2)/D(2)/H(2)O mixtures. Diiron(I) complexes that serve as structural models for the active site of iron hydrogenase are not active in such isotope scrambling but serve as precursors to Fe(II)Fe(II) complexes that are functional models of [Fe]H(2)ase. Using the same experimental protocol as used previously for ((mu-H)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-H(+) (Zhao et al. J. Am. Chem. Soc. 2001, 123, 9710), we now report the results of studies of ((mu-SMe)(mu-pdt)[Fe(CO)(2)(PMe(3))](2)(+)), 1-SMe(+), toward H/D exchange. The 1-SMe(+) complex can take up H(2) and catalyze the H/D exchange reaction in D(2)/H(2)O mixtures under photolytic, CO-loss conditions. Unlike 1-H(+), it does not catalyze H(2)/D(2) scrambling under anhydrous conditions. The molecular structure of 1-SMe(+) involves an elongated Fe.Fe separation, 3.11 A, relative to 2.58 A in 1-H(+). It is proposed that the strong SMe(-) bridging ligand results in catalytic activity localized on a single Fe(II) center, a scenario that is also a prominent possibility for the enzyme active site. The single requirement is an open site on Fe(II) available for binding of D(2) (or H(2)), followed by deprotonation by the external base H(2)O (or D(2)O).  相似文献   

20.
Two uranyl nanotubules with elliptical cross sections were synthesized in high yield from complex and large oxoanions using hydrothermal reactions of uranyl salts with 1,4-benzenebisphosphonic acid or 4,4'-biphenylenbisphosphonic acid and Cs(+) or Rb(+) cations in the presence of hydrofluoric acid. Disordered Cs(+)/Rb(+) cations and solvent molecules are present within and/or between the nanotubules. Ion-exchange experiments with A(2){(UO(2))(2)F(PO(3)HC(6)H(4)C(6)H(4)PO(3)H)(PO(3)HC(6)H(4)C(6)H(4)PO(3))}·2H(2)O (A = Cs(+), Rb(+)), revealed that A(+) cations can be exchanged for Ag(+) ions. The uranyl phenyldiphosphonate nanotubules, Cs(3.62)H(0.38)[(UO(2))(4){C(6)H(4)(PO(2)OH)(2)}(3){C(6)H(4)(PO(3))(2)}F(2)]·nH(2)O, show high stability and exceptional ion-exchange properties toward monovalent cations, as demonstrated by ion-exchange studies with selected cations, Na(+), K(+), Tl(+), and Ag(+). Studies on ion-exchanged single crystal using scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM/EDS) provide evidence for chemical zonation in Cs(3.62)H(0.38)[(UO(2))(4){C(6)H(4)(PO(2)OH)(2)}(3){C(6)H(4)(PO(3))(2)}F(2)]·nH(2)O, as might be expected for exchange through a diffusion mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号