首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation reactions of bare and ligated, monopositive, and dipositive Pa ions in the gas phase were studied by Fourier transform ion cyclotron resonance mass spectrometry. Seven oxidants were employed, ranging from the thermodynamically robust N(2)O to the relatively weak CH(2)O-all oxidized Pa(+) to PaO(+) and PaO(+) to PaO(2)(+). On the basis of experimental observations, it was established that D[Pa(+)-O] and D[OPa(+)-O] > or = 751 kJ mol(-1). Estimates for D[Pa(+)-O], D[OPa(+)-O], IE[PaO], and IE[PaO(2)] were also obtained. The seven oxidants reacted with Pa(2+) to produce PaO(2+), indicating that D[Pa(2+)-O] > or = 751 kJ mol(-1). A particularly notable finding was the oxidation of PaO(2+) by N(2)O to PaO(2)(2+), a species, which formally comprises Pa(VI). Collision-induced dissociation of PaO(2)(2+) suggested the protactinyl connectivity, {O-Pa-O}(2+). The experimentally determined IE[PaO(2)(+)] approximately 16.6 eV is in agreement with self-consistent-field and configuration interaction calculations for PaO(2)(+) and PaO(2)(2+). These calculations provide insights into the electronic structures of these ions and indicate the participation of 5f orbitals in bonding and a partial "6p hole" in the case of protactinyl. It was found that PaO(2)(2+) catalyzes the oxidation of CO by N(2)O-such O atom transport via a dipositive metal oxide ion is distinctive. It was also observed that PaO(2)(2+) is capable of activating H(2) to form the stable PaO(2)H(2+) ion.  相似文献   

2.
Gas-phase reactions of Ta(2+) and TaO(2+) with oxidants, including thermodynamically facile O-atom donor N(2)O and ineffective donor CO, as well as intermediate donors C(2)H(4)O (ethylene oxide), H(2)O, O(2), CO(2), NO, and CH(2)O, were studied by Fourier transform ion cyclotron resonance mass spectrometry. All oxidants reacted with Ta(2+) by electron transfer yielding Ta(+), in accord with the high second ionization energy of Ta (ca. 16 eV). TaO(2+) was also produced with N(2)O, H(2)O, O(2), and CO(2), oxidants with ionization energies above 12 eV; CO reacted only by electron transfer. The following charge separation products were also observed: TaN(+) and TaO(+) with N(2)O; and TaO(+) with O(2), CO(2), and CH(2)O. TaOH(2+), formed with H(2)O, reacted with a second H(2)O by proton transfer. TaO(2+) abstracted an electron from N(2)O, H(2)O, O(2), CO(2), and CO. Oxidation of TaO(2+) by N(2)O was also observed to produce TaO(2)(2+); on the basis of density functional theory (DFT) results, this species is a dioxide, {O-Ta-O}(2+). TaO(2)(2+) reacted by electron transfer with N(2)O, CO(2), and CO to give TaO(2)(+). Additionally, it was found that TaO(2)(2+) oxidizes CO to CO(2) and that it acts as a catalyst in the oxidation of CO by N(2)O. TaO(2)(2+) also activates H(2) to form TaO(2)H(2+). On the basis of the rates of electron transfer from N(2)O, CO(2), and CO to Ta(2+), TaO(2+), and TaO(2)(2+), the following estimates were made for the second ionization energies of Ta, TaO, and TaO(2): IE[Ta(+)] = 15.8 ± 0.3 eV, IE[TaO(+)] = 16.0 ± 0.5 eV, and IE[TaO(2)(+)] = 16.9 ± 0.4 eV. These IEs, together with recently reported bond dissociation energies, D[Ta(+)-O] and D[OTa(+)-O], result in the following bond energies: D[Ta(2+)-O] = 657 ± 58 kJ mol(-1) and D[OTa(2+)-O] = 500 ± 63 kJ mol(-1), the first of which is in good agreement with the value obtained by DFT.  相似文献   

3.
Time-resolved laser fluorescence spectroscopy (TRLFS) is used to study the hydration of the Cm3+ ion in acidified (0.1 M perchloric acid) H2O and D2O from 20 to 200 degrees C. Strong temperature dependency is found for several of the spectroscopic quantities associated with the 6D'(7/2) --> 8S'(7/2) photoemission spectra, with similar relative changes in both solvents. The emission band shifts to lower energy with increasing temperature, which is attributed to an equilibrium between hydrated Cm3+ ions with different numbers of water molecules in the first coordination sphere, namely [Cm(H2O)9]3+ and [Cm(H2O)8]3+. Comparison with crystalline reference compounds and the analysis of hot bands corroborates the assignment of these species. The molar fraction of the octahydrated species increases from approximately 10% at room temperature to approximately 40% at 200 degrees C, indicating an entropy driven reaction. The corresponding thermodynamic parameters are obtained as Delta H degrees = + 13.1 +/- 0.4 kJ mol(-1), Delta S degrees = + 25.4 +/- 1.2 J mol(-1) K(-1), and Delta G298 = + 5.5 +/- 0.6 kJ mol(-1). Both the emission intensity and lifetime decrease with increasing temperature. The temperature dependency of the nonradiative decay rate of the emitting 6D'(7/2) level follows an Arrhenius equation with the activation energy 26.5 kJ mol(-1) (2250 cm(-1)) in both H2O and D2O, which is somewhat lower than the energy gap between 6D'(7/2) and 6P'(5/2) exited state levels.  相似文献   

4.
A new potentially multidentate hexaprotic ligand H(6)[TETA-(PO)(2)] has been prepared by reaction of ethylenediamine-N,N'-diacetic acid (EDDA), paraformaldehyde, and phosphinic acid; its coordination properties with three lanthanide ions (La(3+), Gd(3+), and Lu(3+)) have been explored. The structures of the complexes were studied in aqueous solution by potentiometric pH titrations and by (31)P NMR spectroscopy. Four acidity constants were determined potentiometrically in the range 2.5 < pH < 14. The four measured pK(a) values can be divided into two groups, and within each group the initial deprotonation was found to have little effect on the second. Variable temperature (31)P and (31)P[(1)H] EXSY NMR spectra showed that, for [Lu(TETA-(PO)(2))](3-), the two phosphorus atoms exist in different chemical environments and undergo an exchange process which is very fast on the NMR time scale at room temperature. This result is consistent with one of the phosphinate residues coordinating the metal ion and exchanging with a free analogue. In the case of [La(TETA-(PO)(2))](3-), only one temperature invariant signal is observed in (31)P NMR spectra; it corresponds to both phosphinate residues remaining uncoordinated to La(3+). The stability of [Ln(TETA-(PO)(2))](3-) has an order of La(3+) > Gd(3+) > Lu(3+). The coordination of one phosphinate residue to Lu(3+) brings the metal ion closer to the plane of four nitrogens and farther from the four carboxylate arms, resulting in [Lu(TETA-(PO)(2))](3-) having a lower stability than the corresponding La(3+) and Gd(3+) complexes. A pM-pH distribution diagram showed that introducing two phosphinate groups into TETA renders [Gd(TETA-(PO)(2))](3-) more stable than [Gd(TETA)](-). The selectivity factor of the ligand for Gd(3+) vs Ca(2+), Zn(2+), and Cu(2+) has been calculated, and the hydration number for [Dy(TETA-(PO)(2))](3-) has been measured by (17)O NMR spectroscopy to be zero.  相似文献   

5.
Yu P  Phillips BL  Casey WH 《Inorganic chemistry》2001,40(18):4750-4754
An 17O, 19F, and 27Al NMR study of fluoroaluminate complexes (AlFn(H2O)6-n((3-n)+), n = 0, 1, and 2) in aqueous solution supports the idea that for each substitution of a bound water molecule by a fluoride anion, the exchange rate of bound water with free water increases by about 2 orders of magnitude. New rate coefficients for exchange of inner-sphere water molecules in AlF(H2O)5(2+) are kex(298) = 230(+/-20) s(-1), DeltaH(dagger) = 65(+/-3) kJ mol(-1), and DeltaS(dagger) = 19(+/-10) J mol(-1) K(-1). The corresponding new values for the AlF2(H2O)4(+) complex are: kex(298) = 17 100(+/-500) s(-1), DeltaH(dagger) = 66(+/-2) kJ mol(-1), and DeltaS(dagger) = 57(+/-8) J mol(-1) K(-1). When these new results are combined with those of our previous study,(4) we find no dependence of the solvent exchange rate, in either AlF(H2O)5(2+) or AlF2(H2O)4(+), on the concentration of fluoride or protons over the range of SigmaF = 0.06-0.50 M and [H(+)] = 0.01-0.44 M. A paramagnetic shift of 27Al resonances results from addition of Mn(II) to the aqueous solution as a relaxation agent for bulk waters. This shift allows resolution of the AlFn(H2O)6-n((3-n)+) species in 27Al NMR spectra and comparison of the speciation determined via thermodynamic calculations with that determined by 27Al, 19F, and 17O NMR.  相似文献   

6.
Solution calorimetry, using 6.0 M HCl as a solvent, is used to study the thermochemistry of Gd2BaCuO5 and the high-temperature superconductor LuBa2Cu3O6.92. For the first time, the standard formation enthalpies of these phases have been determined as follows: DeltafH(o)(Gd2BaCuO 5, s, 298.15 K) = -2618.6 +/- 7.4 kJ/mol; DeltafH(o)(LuBa2Cu3O6.92, s, 298.15 K) = -2693.1 +/- 11.9 kJ/mol. The thermodynamic stability at room temperature has been assessed. The results show that Gd211 and Lu123 are thermodynamically stable with respect to binary oxides and unstable with respect to interaction with CO 2 at ambient temperatures. Lu123 is thermodynamically stable with respect to assemblages containing combinations of Lu2O3, CuO, and BaCuO2 and thermodynamically unstable with respect to interactions with water.  相似文献   

7.
A pH titration study shows that 6(A)-((2-(bis(2-aminoethyl)amino)ethyl)amino)-6(A)-deoxy-beta-cyclodextrin (betaCDtren) forms binary metallocyclodextrins, [M(betaCDtren)](2+), for which log(K/dm(3) mol(-)(1)) = 11.65 +/- 0.06, 17.29 +/- 0.05, and 12.25 +/- 0.03, respectively, when M(2+) = Ni(2+), Cu(2+), and Zn(2+), where K is the stability constant in aqueous solution at 298.2 K and I = 0.10 mol dm(-)(3) (NaClO(4)). The ternary metallocyclodextrins [M(betaCDtren)Trp](+), where Trp(-) is the tryptophan anion, are characterized by log(K/dm(3) mol(-)(1)) = 8.2 +/- 0.2 and 8.1 +/- 0.2, 9.5 +/- 0.3 and 9.4 +/- 0.2, and 8.1 +/- 0.1 and 8.3 +/- 0.1, respectively, where the first and second values represent the stepwise stability constants for the complexation of (R)- and (S)-Trp(-), respectively, when M(2+) = Ni(2+), Cu(2+), and Zn(2+). From comparisons of stabilities and UV-visible spectra, the binary and ternary metallocyclodextrins appear to be six-coordinate when M(2+) = Ni(2+) and Zn(2+) and five-coordinate when M(2+) = Cu(2+). The factors affecting the stoichiometries and stabilities of the metallocyclodextrins, are discussed and comparisons are made with related systems.  相似文献   

8.
The attempt to prepare hitherto unknown homopolyatomic cations of sulfur by the reaction of elemental sulfur with blue S8(AsF6)2 in liquid SO2/SO2ClF, led to red (in transmitted light) crystals identified crystallographically as S8(AsF6)2. The X-ray structure of this salt was redetermined with improved resolution and corrected for librational motion: monoclinic, space group P2(1)/c (No. 14), Z = 8, a = 14.986(2) A, b = 13.396(2) A, c = 16.351(2) A, beta = 108.12(1) degrees. The gas phase structures of E8(2+) and neutral E8 (E = S, Se) were examined by ab initio methods (B3PW91, MPW1PW91) leading to delta fH theta[S8(2+), g] = 2151 kJ/mol and delta fH theta[Se8(2+), g] = 2071 kJ/mol. The observed solid state structures of S8(2+) and Se8(2+) with the unusually long transannular bonds of 2.8-2.9 A were reproduced computationally for the first time, and the E8(2+) dications were shown to be unstable toward all stoichiometrically possible dissociation products En+ and/or E4(2+) [n = 2-7, exothermic by 21-207 kJ/mol (E = S), 6-151 kJ/mol (E = Se)]. Lattice potential energies of the hexafluoroarsenate salts of the latter cations were estimated showing that S8(AsF6)2 [Se8(AsF6)2] is lattice stabilized in the solid state relative to the corresponding AsF6- salts of the stoichiometrically possible dissociation products by at least 116 [204] kJ/mol. The fluoride ion affinity of AsF5(g) was calculated to be 430.5 +/- 5.5 kJ/mol [average B3PW91 and MPW1PW91 with the 6-311 + G(3df) basis set]. The experimental and calculated FT-Raman spectra of E8(AsF6)2 are in good agreement and show the presence of a cross ring vibration with an experimental (calculated, scaled) stretching frequency of 282 (292) cm-1 for S8(2+) and 130 (133) cm-1 for Se8(2+). An atoms in molecules analysis (AIM) of E8(2+) (E = S, Se) gave eight bond critical points between ring atoms and a ninth transannular (E3-E7) bond critical point, as well as three ring and one cage critical points. The cage bonding was supported by a natural bond orbital (NBO) analysis which showed, in addition to the E8 sigma-bonded framework, weak pi bonding around the ring as well as numerous other weak interactions, the strongest of which is the weak transannular E3-E7 [2.86 A (S8(2+), 2.91 A (Se8(2+)] bond. The positive charge is delocalized over all atoms, decreasing the Coulombic repulsion between positively charged atoms relative to that in the less stable S8-like exo-exo E8(2+) isomer. The overall geometry was accounted for by the Wade-Mingos rules, further supporting the case for cage bonding. The bonding in Te8(2+) is similar, but with a stronger transannular E3-E7 (E = Te) bonding. The bonding in E8(2+) (E = S, Se, Te) can also be understood in terms of a sigma-bonded E8 framework with additional bonding and charge delocalization occurring by a combination of transannular n pi *-n pi * (n = 3, 4, 5), and np2-->n sigma * bonding. The classically bonded S8(2+) (Se8(2+) dication containing a short transannular S(+)-S+ (Se(+)-Se+) bond of 2.20 (2.57) A is 29 (6) kJ/mol higher in energy than the observed structure in which the positive charge is delocalized over all eight chalcogen atoms.  相似文献   

9.
A complete potentiometric and NMR relaxometric solution study on the heptadentate 2,2',2″,2'″-[(6-piperidinyl-1,3,5-triazine-2,4-diyl)dihydrazin-2-yl-1-ylidene]tetraacetic acid (PTDITA) ligand has been carried out. This ligand is based on the 1,3,5-triazine ring with two hydrazine-N,N-diacetate groups in positions 2 and 4 and a piperidine moiety in position 6. The introduction of the triazine ring into the ligand backbone is expected to modify its flexibility and then to affect the stability of the corresponding complexes with transition-metal and lanthanide ions. Thermodynamic stabilities have been determined by pH potentiometry, UV spectrophotometry, and (1)H NMR spectroscopy for formation of the complexes with Mg(2+), Ca(2+), Cu(2+), Zn(2+), La(3+), Gd(3+), and Lu(3+) ions. PTDITA shows a good binding affinity for Gd(3+) (logK = 18.49, pGd = 18.6) and an optimal selectivity for Gd(3+) over the endogenous Ca(2+), Zn(2+), and Cu(2+) (K(sel) = 6.78 × 10(7)), which is 3 orders of magnitude higher that that reported for Gd(DTPA) (K(sel) = 2.85 × 10(4)). This is mainly due to the lower stability of the Cu(II)- and Zn(II)(PTDITA) complexes compared to the corresponding DTPA complexes, which suggests an important role of the triazine ring on the selectivity for the Gd(3+) ion. The relaxometric properties of Gd(PTDITA) have been investigated in aqueous solution by measuring the (1)H relaxivity as a function of the pH, temperature, and magnetic field strength (nuclear magnetic relaxation dispersion profile). Variable-temperature (17)O NMR data have provided direct information on the kinetic parameters for exchange of the coordinated water molecules. A simultaneous fit of the data suggests that the high relaxivity value (r(1) = 10.2 mM(-1) s(-1)) is a result of the presence of two inner-sphere water molecules along with the occurrence of relatively slow rotation and electronic relaxation. The water residence lifetime, (298)τ(M) = 299 ns, is quite comparable to that of clinically approved magnetic resonance imaging contrast agents. The displacement of the inner-sphere water molecules by bidentate endogeneous anions (citrate, phosphate, and carbonate) has also been evaluated by (1)H relaxometry. In general, the binding interaction is markedly weak, and only in the case of citrate, a ca. 35% decrease in relaxivity was observed in the presence of 60 equiv of the anion. Phosphate and carbonate also interact with the paramagnetic ion, likely as monodentate ligands, but formation of the ternary complex is accompanied by a modest increase of r(1) due to the contribution of second-sphere water molecules.  相似文献   

10.
Three novel GdDO3A-type bismacrocyclic complexes, conjugated to Ca (2+) chelating moieties like ethylenediaminetetraacetic acid and diethylenetriamine pentaacetic acid bisamides, were synthesized as potential "smart" magnetic resonance imaging contrast agents. Their sensitivity toward Ca (2+) was studied by relaxometric titrations. A maximum relaxivity increase of 15, 6, and 32% was observed upon Ca (2+) binding for Gd 2L (1), Gd 2L (2), and Gd 2L (3), respectively (L (1) = N, N-bis{1-[{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]eth-2-yl}amino)carbonyl]methyl}-(carboxymethyl)amino]eth-2-yl}aminoacetic acid; L (2) = N, N-bis[1-({[({alpha-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]- p-tolylamino}carbonyl)methyl]-(carboxymethyl)}amino)eth-2-yl]aminoacetic acid; L (3) = 1,2-bis[{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]eth-2-yl}amino)carbonyl]methyl}(carboxymethyl)amino]ethane). The apparent association constants are log K A = 3.6 +/- 0.1 for Gd 2L (1) and log K A = 3.4 +/- 0.1 for Gd 2L (3). For the interaction between Mg (2+) and Gd 2L (1), log K A = 2.7 +/- 0.1 has been determined, while no relaxivity change was detected with Gd 2L (3). Luminescence lifetime measurements on the Eu (3+) complexes in the absence of Ca (2+) gave hydration numbers of q = 0.9 (Eu 2L (1)), 0.7 (Eu 2L (2)), and 1.3 (Eu 2L (3)). The parameters influencing proton relaxivity of the Gd (3+) complexes were assessed by a combined nuclear magnetic relaxation dispersion (NMRD) and (17)O NMR study. Water exchange is relatively slow on Gd 2L (1) and Gd 2L (2) ( k ex (298) = 0.5 and 0.8 x 10 (6) s (-1)), while it is faster on Gd 2L (3) (k ex (298) = 80 x 10 (6) s (-1)); in any case, it is not sensitive to the presence of Ca (2+). The rotational correlation time, tau R (298), differs for the three complexes and reflects their rigidity. Due to the benzene linker, the Gd 2L (2) complex is remarkably rigid, with a correspondingly high relaxivity despite the low hydration number ( r 1 = 10.2 mM (-1)s (-1) at 60 MHz, 298 K). On the basis of all available experimental data from luminescence, (17)O NMR, and NMRD studies on the Eu (3+) and Gd (3+) complexes of L (1) and L (3) in the absence and in the presence of Ca (2+), we conclude that the relaxivity increase observed upon Ca (2+) addition can be mainly ascribed to the increase in the hydration number, and, to a smaller extent, to the Ca (2+)-induced rigidification of the complex.  相似文献   

11.
The tripodal amino-phosphinate ligands, tris(4-(phenylphosphinato)-3-benzyl-3-azabutyl)amine (H(3)ppba.2HCl.H(2)O) and tris(4-(phenylphosphinato)-3-azabutyl)amine (H(3)ppa.HCl.H(2)O) were synthesized and reacted with Al(3+), Ga(3+), In(3+) and the lanthanides (Ln(3+)). At 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(3)ppba)(2)](3+)(M = Al(3+), Ga(3+), In(3+), Ho(3+)-Lu(3+)) were isolated. The bicapped [Ga(H(3)ppba)(2)](NO(3))(2)Cl.3CH(3)OH was structurally characterized and was shown indirectly by various techniques to be isostructural with the other [M(H(3)ppba)(2)](3+) complexes. Also, at 2 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)(2)](5+)(M = La(3+)-Tb(3+)) were characterized, and the X-ray structure of [Gd(H(4)ppba)(2)](NO(3))(4)Cl.3CH(3)OH was determined. At 1 : 1 H(3)ppba to metal ratios, complexes of the type [M(H(4)ppba)](4+)(M = La(3+)-Er(3+)) were isolated and characterized. Elemental analysis and spectroscopic evidence supported the formation of a 1 : 1 monocapped complex. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+), complex of the type [Ga(ppa)].3H(2)O was obtained. Reaction of 1 : 1 ratios of H(3)ppa with Ln(3+) and In(3+) yielded complexes of the type [M(H(3)ppa)](3+)(M = La(3+)-Yb(3+)) but with Ga(3+) a neutral complex [Ga(ppa)].3H(2)O was obtained. The formation of an encapsulated 1 : 1 complex is supported by elemental analysis and spectroscopic evidence.  相似文献   

12.
The carbonate complexation of curium(III) in aqueous solutions with high ionic strength was investigated below solubility limits in the 10-70 degrees C temperature range using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The equilibrium constant, K(3), for the Cm(CO(3))(2-) + CO(3)(2-) right harpoon over left harpoon Cm(CO(3))(3)(3-) reaction was determined (log K(3) = 2.01 +/- 0.05 at 25 degrees C, I = 3 M (NaClO(4))) and compared to scattered previously published values. The log K(3) value for Cm(III) was found to increase linearly with 1/T, reflecting a negligible temperature influence on the corresponding molar enthalpy change, Delta(r)H(3) = 12.2 +/- 4.4 kJ mol(-1), and molar entropy change, Delta(r)S(3) = 79 +/- 16 J mol(-1) K(-1). These values were extrapolated to I = 0 with the SIT formula (Delta(r)H(3) degrees = 9.4 +/- 4.8 kJ mol(-1), Delta(r)S(3) degrees = 48 +/- 23 J mol(-1) K(-1), log K(3) degrees = 0.88 +/- 0.05 at 25 degrees C). Virtually the same values were obtained from the solubility data for the analogous Am(III) complexes, which were reinterpreted considering the transformation of the solubility-controlling solid. The reaction studied was found to be driven by the entropy. This was interpreted as a result of hydration changes. As expected, excess energy changes of the reaction showed that the ionic strength had a greater influence on Delta(r)S(3) than it did on Delta(r)H(3).  相似文献   

13.
Bakac A  Shi C  Pestovsky O 《Inorganic chemistry》2004,43(17):5416-5421
Superoxometal complexes L(H(2)O)MOO(2+) (L = (H(2)O)(4), (NH(3))(4), or N(4)-macrocycle; M = Cr(III), Rh(III)) react with iodide ions according to the stoichiometry L(H(2)O)MOO(2+) + 3I(-) + 3H(+) --> L(H(2)O)MOH(2+) + 1.5I(2) + H(2)O. The rate law is -d[L(H(2)O)MOO(2+)]/dt = k [L(H(2)O)MOO(2+)][I(-)][H(+)], where k = 93.7 M(-2) s(-1) for Cr(aq)OO(2+), 402 for ([14]aneN(4))(H(2)O)CrOO(2+), and 888 for (NH(3))(4)(H(2)O)RhOO(2+) in acidic aqueous solutions at 25 degrees C and 0.50 M ionic strength. The Cr(aq)OO(2+)/I(-) reaction exhibits an inverse solvent kinetic isotope effect, k(H)()2(O)/k(D)2(O) = 0.5. In the proposed mechanism, the protonation of the superoxo complex precedes the reaction with iodide. The related Cr(aq)OOH(2+)/I(-) reaction has k(H)2(O)/k(D)2(O) = 0.6. The oxidation of (NH(3))(5)Rupy(2+) by Cr(aq)OO(2+) exhibits an [H(+)]-dependent pathway, rate = (7.0 x 10(4) + 1.78 x 10(5)[H(+)])[Ru(NH(3))(5)py(2+)][Cr(aq)OO(2+)]. Diiodine radical anions, I(2)(*)(-), reduce Cr(aq)OO(2+) with a rate constant k = 1.7 x 10(9) M(-1) s(-1).  相似文献   

14.
The systems Fe(H(2)O)(n) (+)/CO[bond]H(2)O and Fe(CO)(n) (+)/CO[bond]H(2)O (n = 1 and 2) were investigated in a triple cell Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Using mixtures of CO with a very small amount of water, the ligand exchange equilibrium was reached, allowing experimental determination of the relevant equilibrium constants and free energies of reaction. Quantum chemical calculations at the B3LYP level of theory on the reactant and product species allowed us to determine the entropic terms and to derive the relative bond energies of CO and H(2)O in the mono- and bis-ligated complexes. For n = 1, H(2)O is more strongly bound to Fe(+) than CO by 4.1 +/- 1.6 kJ x mol(-1) at 298 K. For n = 2, at the same temperature, H(2)O is more strongly bound than CO to (H(2)O)Fe(+) by 7.6 +/- 1.6 kJ x mol(-1), and to (CO)Fe(+) by more than 20.1 kJ x mol(-1).  相似文献   

15.
16.
Hung M  Stanbury DM 《Inorganic chemistry》2005,44(26):9952-9960
The aqueous oxidation of thioglycolic acid (TGA) by [Os(phen)(3)](3+) (phen = 1,10-phenanthroline) is catalyzed by traces of ubiquitous Cu(2+) and inhibited by the product [Os(phen)(3)](2+). In the presence of dipicolinic acid (dipic), which thoroughly masks trace Cu(2+) catalysis, and spin trap PBN, the kinetics under anaerobic conditions have been studied in the pH range 1.82-7.32. The rate law is -d[Os(phen)(3)(3+)]/dt = k[TGA](tot)[Os(phen)(3)(3+)], with k = 2{(k(b)K(a1) + k(c)K(a1)K(i))[H(+)] + k(d)K(a1)K(a2)}/{[H(+)](2) + K(a1)[H(+)] + K(a1)K(a2)}; K(a1) and K(a2) are the successive acid dissociation constants of TGA, and K(i) is the tautomerization constant of two TGA monoanions. k(b) + k(c)K(i) = (5.9 +/- 0.3) x 10(3) M(-)(1) s(-)(1), k(d) = (1.6 +/- 0.1) x 10(9) M(-)(1) s(-)(1) at mu = 0.1 M (NaCF(3)SO(3)) and 25 degrees C. The major products in the absence of spin traps are dithiodiglycolic acid, [Os(phen)(3)](2+), and [Os(phen)(2)(phen-tga)](2+), where phen-tga is phenanthroline with a TGA substituent. A mechanism is proposed in which neutral TGA is unreactive, the (minor) thiolate form of the TGA monoanion undergoes one-electron oxidation by [Os(phen)(3)](3+) (k(c)), and the dianion of TGA likewise undergoes one-electron oxidation by [Os(phen)(3)](3+) (k(d)). The Marcus cross relationship provides a good account for the magnitude of k(d) in this and related reactions of TGA. [Os(phen)(2)(phen-tga)](2+) is suggested to arise from a post-rate-limiting step involving attack of the TGA(*) radical on [Os(phen)(3)](3+).  相似文献   

17.
The dicopper(II) complex [Cu(2)(L)](4+) (L = alpha,alpha'-bis[bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino]-m-xylene) reacts with hydrogen peroxide to give the dicopper(II)-hydroquinone complex in which the xylyl ring of the ligand has undergone a double hydroxylation reaction at ring positions 2 and 5. The dihydroxylated ligand 2,6-bis([bis[2-(3-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)benzene-1,4-diol was isolated by decomposition of the product complex. The incorporation of two oxygen atoms from H(2)O(2) into the ligand was confirmed by isotope labeling studies using H(2)(18)O(2). The pathway of the unusual double hydroxylation was investigated by preparing the two isomeric phenolic derivatives of L, namely 3,5-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (6) and 2,6-bis([bis[2-(1-methyl-1H-benzimidazol-2-yl)ethyl]amino]methyl)phenol (7), carrying the hydroxyl group in one of the two positions where L is hydroxylated. The dicopper(II) complexes prepared with the new ligands 6 and 7 and containing bridging micro-phenoxo moieties are inactive in the hydroxylation. Though, the dicopper(II) complex 3 derived from 6 and containing a protonated phenol is rapidly hydroxylated by H(2)O(2) and represents the first product formed in the hydroxylation of [Cu(2)(L)](4+). Kinetic studies performed on the reactions of [Cu(2)(L)](4+) and 3 with H(2)O(2) show that the second hydroxylation is faster than the first one at room temperature (0.13 +/- 0.05 s(-1) vs 5.0(+/-0.1) x 10(-3) s(-1)) and both are intramolecular processes. However, the two reactions exhibit different activation parameters (Delta H++ = 39.1 +/- 0.9 kJ mol(-1) and Delta S++ = -115.7 +/- 2.4 J K(-1) mol(-1) for the first hydroxylation; Delta H++ = 77.8 +/- 1.6 kJ mol(-1) and Delta S++ = -14.0 +/- 0.4 J K(-1) mol(-1) for the second hydroxylation). By studying the reaction between [Cu(2)(L)](4+) and H(2)O(2) at low temperature, we were able to characterize the intermediate eta(1):eta(1)-hydroperoxodicopper(II) adduct active in the first hydroxylation step, [Cu(2)(L)(OOH)](3+) [lambda(max) = 342 (epsilon 12,000), 444 (epsilon 1200), and 610 nm (epsilon 800 M(-1)cm(-1)); broad EPR signal in frozen solution indicative of magnetically coupled Cu(II) centers].  相似文献   

18.
The reaction of Ln(NO(3))(3).aq with K(3)[Fe(CN)(6)] or K(3)[Co(CN)(6)] and 2,2'-bipyridine in water led to five one-dimensional complexes: trans-[M(CN)(4)(mu-CN)(2)Ln(H(2)O)(4) (bpy)](n)().XnH(2)O.1.5nbpy (M = Fe(3+) or Co(3+); Ln = Sm(3+), Gd(3+), or Yb(3+); X = 4 or 5). The structures for [Fe(3)(+)-Sm(3+)] (1), [Fe(3)(+)-Gd(3+)] (2), [Fe(3)(+)-Yb(3+)] (3), [Co(3)(+)-Gd(3+)] (4), and [Co(3)(+)-Yb(3+)] (5) have been solved; they crystallize in the triclinic space P1 and are isomorphous. The [Fe(3+)-Sm(3+)] complex is a ferrimagnet, its magnetic studies suggesting the onset of weak ferromagnetic 3-D ordering at 3.5 K. The [Fe(3+)-Gd(3+)] interaction is weakly antiferromagnetic. The isotropic nature of Gd(3+) allowed us to evaluate the exchange interaction (J = 0.77 cm(-)(1)).  相似文献   

19.
The dissociation of energy-selected ND(3) (+) to form ND(2) (+)+D near its threshold has been investigated using the pulsed field ionization-photoelectron (PFI-PE)-photoion coincidence method. The breakdown curves for ND(3) (+) and ND(2) (+) give a value of 15.891+/-0.001 eV for the 0 K dissociation threshold or appearance energy (AE) for ND(2) (+) from ND(3). We have also measured the PFI-PE vibrational bands for ND(3) (+)(X;v(2) (+)=0, 1, 2, and 3), revealing partially resolved rotational structures. The simulation of these bands yields precise ionization energies (IEs) for ND(3) (+) X(0,v(2) (+)=0-3,0,0)<--ND(3) X(0,0,0,0). Using the 0 K AE (ND(2) (+)) and IE(ND(3))=10.200+/-0.001 eV determined in the present study, together with the known 0 K bond dissociation energy for ND(3) [D(0)(D-ND(2))=4.7126+/-0.0025 eV], we have determined the D(0)(ND(2) (+)-D), IE(ND(2)), and 0 K heat of formation for ND(2) (+) to be 5.691+/-0.001 eV, 11.1784+/-0.0025 eV, and 1261.82+/-0.4 kJ/mol, respectively. The PFI-PE spectrum is found to exhibit a steplike feature near the AE(ND(2) (+)), indicating that the dissociation of excited ND(3) (+) at energies slightly above the dissociation threshold is prompt, occurring in the time scale 相似文献   

20.
A guided ion beam tandem mass spectrometer is used to study the kinetic-energy dependence of doubly charged atomic tantalum cations (Ta(2+)) reacting with CH4 and CD4. As for the analogous singly charged system, the dehydrogenation reaction to form TaCH2(2+) + H2 is exothermic. The charge-transfer reaction to form Ta(+) + CH4(+) and the charge-separation reaction to form TaH(+) + CH3(+) are also observed at low energies in exothermic processes, as is a secondary reaction of TaCH2(2+) to form TaCH3(+) + CH3(+). At higher energies, other doubly charged products, TaC(2+) and TaCH3(2+), are observed, although no formation of TaH(2+) was observed. Modeling of the endothermic cross sections provides 0 K bond dissociation energies (in electronvolts) of D0(Ta(2+)-C) = 5.42 +/- 0.19 and D0(Ta(2+)-CH3) = 3.40 +/- 0.16. These experimental bond energies are in poor agreement with density functional calculations at the B3LYP/HW+/6-311++G(3df,3p) level of theory. However, the Ta(2+)-C bond energy is in good agreement with calculations at the QCISD(T) level of theory, and the Ta(2+)-CH3 bond energy is in good agreement with density functional calculations at the BHLYP level of theory. Theoretical calculations reveal the geometric and electronic structures of all product ions and are used to map the potential energy surface, which describes the mechanism of the reaction and key intermediates. Both experimental and theoretical results suggest that TaH(+), TaCH2(2+), and TaCH3(2+) are formed through a H-Ta(2+)-CH3 intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号