首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
CoFe alloy thin films were studied with the intention of potential use as a soft underlayer (SUL) for Co-based perpendicular recording media. The effect of composition and the effects of seedlayers on the formation of crystalline phase and crystallographic texture and the magnetic properties were investigated. Films deposited on Ta/Pd seedlayer were found to have a good FCC(1 1 1) texture than those deposited on glass substrates or on Ta seedlayers. The magnetic properties were also better when deposited on Ta/Pd seedlayers. On these seedlayers, Fe concentration of 15 at% was found to be suitable for the formation of FCC phase. Disks were prepared with CoFe SULs. The noise of CoFe SUL is one of the challenges to be solved.  相似文献   

2.
The microstructure and magnetic properties of FePt films grown on Cr and CrW underlayers were investigated. The FePt films that deposited on Cr underlayer show (2 0 0) orientation and low coercivity because of the diffusion between FePt and Cr underlayer. The misfit between FePt magnetic layer and underlayer increases by small addition of W element in Cr underlayer or using a thin Mo intermediate layer, which is favorable for the formation of (0 0 1) orientation and the transformation of FePt from fcc to fct phase. A good FePt (0 0 1) texture was obtained in the films with Cr85W15 underlayer with substrate temperature of 400 °C. The FePt films deposited on Mo/Cr underlayer exhibit larger coercivity than that of the films grown on Pt/Cr85W15 because 5 nm Mo intermediate layer depressed the diffusion of Cr into magnetic layer.  相似文献   

3.
Granular L10 FePt (0 0 1) thin films were deposited on a Si substrate with Ta/MgO underlayers by rf sputtering. The effects of in-situ heating temperatures (350-575 °C), pressures (2-40 mTorr), and sputtering powers (15-75 W) on texture and microstructure were investigated for the FePt films. We obtained films with grain densities approaching 50 teragrains per in.2, grains sizes down to 2.2 nm with center-to-center spacing of 4.2 nm and coercivity of 24 kOe. The order parameters for the L10 FePt thin films were derived and calculated to be as high as 0.91. Although the grain size is small, the spacing between grains is too large for practical heat assisted magnetic recording media. To reach the desired results, we propose that layer-by-layer growth should be promoted in the FePt layer by inserting another underlayer that provides a better lattice match to L10 FePt.  相似文献   

4.
A modified scanning Kerr microscope has been used as a static Kerr magnetometer to acquire in-plane vector hysteresis loops from square Si/Ta(50 Å)/Co80Fe20(40 Å)/Ni88Fe12(108 Å)/Ta(100 Å) elements with size ranging from 123 nm to 10 μm. The nanoscale elements were arranged in square arrays of 4 μm size. The laser beam was focused to a sub-micron spot, while polarization changes were recorded with an optical bridge detector containing a beam-splitting polarizer and two quadrant photodiodes. The coercive field exhibited a non-monotonic increase from 11 Oe in the 10 μm element to 170 Oe in the 123 nm elements. Loops acquired with the field applied parallel to the easy and hard in-plane uniaxial anisotropy axes were observed to become more similar in shape as the element size decreased.  相似文献   

5.
The evolution of the interface between organosilicate glass (OSG) and sputter deposited Ta or TaN films has been characterized by X-ray phototelectron spectroscopy (XPS). Cross-sectional TEM (XTEM) was also used to analyze Ta/OSG and TaN/OSG/interfaces for samples formed under different deposition conditions. XPS data show that Ta deposition onto OSG results in formation of an interphase between 1 and 2 nm thick composed of oxidized Ta and C. Metallic Ta is then formed on top of the interfacial region. In contrast, Ta-rich TaN formation occurs with some nitridation of the substrate, but with no significant interphase formation. The XPS data are consistent with the XTEM data. The XTEM results for Ta/OSG indicate a spatially irregular interface over a length scale of ∼2 nm, while results for TaN/OSG indicate a spatially abrupt region.  相似文献   

6.
The CoFe/Os/CoFe thin films were deposited on natural oxidized Si(1 0 0) substrates at room temperature by an ultra-high vacuum DC-magnetron sputtering system with a base pressure less than 1×10−8 Torr. The thickness of the ferromagnetic layers was 100 Å in all cases and a series of trilayers with Os spacer ranging from 3 to 20 Å was made. Effects of the Os layer thickness on the magnetoresistance (MR) and magnetic properties were investigated. The results showed that the magnetism switched from ferromagnetic (Os thickness=3, 5 Å) to antiferromagnetic (Os thickness=7–13 Å) and then ferromagnetic (Os thickness=20 Å) again. From the MR study, we see that the AMR ratio decreased from 4.64% to the minimum value 0.69% at 9 Å and then increased; GMR ratio increased from 0.01% to the maximum value 0.43% at 9 Å and then decreased. From the hysteresis loops, the results exhibited that coercivity increased from 16 Oe to the maximum value 92 Oe at 9 Å and then decreased, and squareness value decreased from 0.97 to the minimum value 0.17 at 9 Å and then increased. Dependence of saturation field on Os spacer-layer thickness for CoFe trilayers showed a maximum value 216 Oe at 9 Å. This suggests that the small GMR effect may be related to the small exchange coupling strength in CoFe/Os/CoFe thin films.  相似文献   

7.
The SmCo-based films with different underlayers were deposited on Si substrates at 650 °C by magnetron sputtering process. Effect of different underlayers on the crystal structure and magnetic properties were investigated. The results show that the Al, Cu, and Ag underlayers can not make positive contributions on the crystal structure and magnetic properties. This is very different for the films with Mo and Cr underlayers, which exhibit well preferred orientation growth and improved magnetic properties. Especially, large intrinsic coercivity of 3.52 kOe and maximum energy product of 6.31 MGOe are observed for the films with Mo underlayers, which are found to be suitable for use in developed micro-magnetic devices from the high temperature aging results.  相似文献   

8.
SiOx films were deposited on Si(1 0 0) substrates by evaporation of SiO powder. The samples were annealed from room-temperature (RT) to 1100 °C. After the samples were cooled down to RT, photoluminescence (PL) spectra from these samples were measured. It was found that when the annealing temperature Ta is not higher than 1000 °C, there is a PL centered at 620 nm, and with Ta increasing the intensity increases at first and then decreases when Ta is higher than 500 °C. When Ta is no less than 1000 °C another PL peak located at 720 nm appears. Combined with Raman and XRD spectra, we confirm that the latter PL is from Si nanocrystals that start to form when Ta is higher than 1000 °C. PL spectra for Ta<900 °C were discussed in detail and was attributed to defects in the matrix rather than from Si clusters.  相似文献   

9.
The diffusion of Cu through TaN-based thin layers into a Si substrate has been studied. The barrier efficiency of TaN/Ta/TaN multilayers of 150 nm in thickness has been investigated and is compared with that of TaN single layers. Thermal stabilities of these TaN-based thin layers against Cu diffusion were determined from in situ X-ray diffraction experiments, conducted in the temperature range of 773-973 K. The TaN/Ta/TaN barrier appeared to be more efficient in preventing Cu diffusion than the TaN single layer.  相似文献   

10.
Ta (100 nm)/NdFeB (5 μm)/Ta (100 nm) films have been deposited onto Si substrates using triode sputtering (deposition rate ∼18 μm/h). A 2-step procedure was used: deposition at temperatures up to 400 °C followed by ex-situ annealing at higher temperatures. Post-deposition annealing temperatures above 650 °C are needed to develop high values of coercivity. The duration of the annealing time is more critical in anisotropic samples deposited onto heated substrates than in isotropic samples deposited at lower temperatures. For a given set of annealing conditions (750 °C/10′), high heating rates (?2000 °C/h) favour high coercivity in both isotropic and anisotropic films. The shape and size of Nd2Fe14B grains depend strongly on the heating rate.  相似文献   

11.
FePt and FePt/Cr films were epitaxially grown on MgO (2 0 0) substrates at 350 °C by DC magnetron sputtering. The structural properties and epitaxial relationship are investigated by high-resolution X-ray diffraction (XRD). The XRD spectra revealed that both FePt and FePt/Cr films had a (0 0 1) preferred orientation. However, FePt films with Cr underlayers had a larger a and a smaller c than those of the samples without Cr underlayers. Furthermore, the FePt (0 0 1) peak characterized by its rocking curves became less pronounced when the Cr underlayer was applied. The off-spectra from the MgO (1 1 1), Cr (1 0 1) and FePt (1 1 1) demonstrated that the epitaxial relationship between the FePt film, Cr underlayer and MgO substrate was confirmed to be FePt (0 0 1)<100> || Cr (1 0 0)<1 1 0> || MgO (1 0 0)<0 0 1>. The domain size and Ms decreased when the Cr underlayer was applied due to the diffusion of Cr and the existence of the initial layer between Cr and FePt layers.  相似文献   

12.
The coercivity of a Co/Pt multilayer with out-of-plane anisotropy can be lowered greatly if it is grown onto an ultrathin NiO underlayer . By making use of this characteristic, a series of samples glass/NiO(10 Å)/[Co(4 Å)/Pt(5 Å)]3/Pt(x Å)/[Co(4 Å)/Pt(5 Å)]3 with different Pt spacer thickness have been prepared to determine the ferromagnetic (FM) coupling between Co layers across the Pt layer. The measurements of major and minor hysteresis loops have shown that the FM coupling between the top and bottom Co/Pt multilayers decreases monotonically with the Pt layer thickness and disappears above the Pt layer thickness of 40 Å. This thickness of 40 Å is much larger than that in the literature. In addition to the FM coupling between the top and bottom Co/Pt multilayers across the Pt spacer, there exists a weak biquadratic coupling, which induces the broad transition of the bottom Co/Pt multilayer.  相似文献   

13.
In-situ electrical resistance measurements were performed to obtain the scattering characteristics of very thin polycrystalline metal transition magnetic alloys grown by ion beam deposition (IBD) on specific underlayers. The experimental curves show size effects at small film thicknesses and important differences between Co85Fe15 and Ni81Fe19 thin layers grown on identical underlayers of Ta70 Å/Ru13 Å. The largest difference was observed in Ni81Fe19 films grown on underlayers of amorphous Ta70 Å. The experimental curves of electrical resistivity/conductivity variation with layer thickness were well fit within the Mayadas and Shatzkes (M-S) model, assuming specific formulations for grain growth with layer thickness.  相似文献   

14.
Ta-N thin films were deposited on AISI 317L stainless steel (SS) substrates by cathodic arc deposition (CAD) at substrate biases of −50 and −200 V. The as-deposited films were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX). The results show that stoichiometric TaN with hexagonal lattice (3 0 0) preferred orientation was achieved at the bias of −200 V. On the other hand, Ta-rich Ta-N thin film deposited at −50 V shows amorphous nature. According to the XPS result, Ta element in the films surface exist in bonded state, including the Ta-N bonds characterized by the doublet (Ta 4f7/2 = 23.7 eV and Ta 4f5/2 = 25.7 eV). Electrochemical properties of the Ta-N coated stainless steel systems were investigated using potentiodynamic polarization and electrochemical impedance spectroscope (EIS) in Hank's solution at 37 °C. For the Ta-N coated samples, the corrosion current (icorr) is two or three orders of magnitude lower than that of the uncoated ones, indicating a significantly improved corrosion resistance. Growth defects in the Ta-N thin films produced by CAD, however, play a key role in the corrosion process, especially the localised corrosion. Using the polarization fitting and the EIS modelling, we compared the polarization resistance (Rp) and the porosity (P) of the Ta-N coatings deposited at different biases. It seems that Ta-N film with comparatively lower bias (−50 V) shows better corrosion behavior in artifical physiological solution. That may be attributed to the effect of ion bombarding, which can be modulated by the substrate bias.  相似文献   

15.
B. Fu 《Applied Surface Science》2010,257(5):1500-1505
This paper addresses the in situ growth stress evolution and post-growth stress relaxation during the phase separation of immiscible Fe0.51Cu0.49 thin films at various in situ deposition temperatures. Each film was sputter-deposited onto a 10 nm Si3N4 underlayer that was grown on top of Si [0 0 1] substrate at 25 °C, 145 °C, 205 °C, 265 °C or 325 °C. The thin film stress was measured using a wafer curvature technique. The in situ growth stress increased in compression with increasing substrate temperature. The stress relaxation of the Fe0.51Cu0.49 was found to have a linear increase with the inverse grain size for films deposited at temperatures greater than 205 °C. The stress state was correlated to the films’ phase and morphology by X-ray diffraction, (scanning) transmission electron microscopy and atomic force microscopy techniques.  相似文献   

16.
Strontium ferrite (SrM) thin films were deposited on thermally oxidized silicon wafer with Au underlayer. Gold underlayers were prepared at various substrate temperatures by using a magnetron sputtering system. C-axis oriented SrM perpendicular films and preferred (1 1 1) orientation of underlayer have confirmed by X-ray diffraction patterns. The intensity of (1 1 1) diffraction line for Au and that of (0 0 l) diffraction line for strontium ferrite decrease with increase in substrate temperature (Tu) The maximum coercivity and remanent squareness ratio in perpendicular direction, at Tu of 500 °C, are 5.4 kOe and 0.68, respectively. The strength of the intergranular interaction of SrM magnetic particles is described by the parameter Δm. The SrM/Au films prepared at Tu above 100 °C have smaller Δm peak values than that for SrM/Au films prepared at Tu of room temperature. This behavior is related to low magnetostatic coupling between the magnetic particles separated by the non-magnetic amorphous phase.  相似文献   

17.
Thin films of Nd_2Fe_{14}B were fabricated on heated glass substrates by dc magnetron sputtering. Different material underlayers (Ta, Mo, or W) were used to examine the underlayer influence on the structural and magnetic properties of the NdFeB films. Deposited on a Ta buffer layer at 420℃, the 300 nm thick NdFeB films were shown to be isotropic. But when the substrate temperature T_s was elevated to 520℃, the Nd_2Fe_{14}B crystallites of (00l) plane were epitaxially grown on Ta (110) underlayer. In contrast, Mo (110) buffer layer could not induce any preferential orientation in NdFeB film irrespective of the substrate temperature or film thickness. The W buffer layer was found to be most effective for the nucleation of Nd_2Fe_{14}B crystallites with c-axis alignment perpendicular to the film plane when T_s<490℃. But at T_s=490℃ the magnetic layer became isotropic. The maximum coercivity obtained was about 995 kA/m for the 100nm film deposited on W underlayer at 490℃. These variations were tentatively explained in terms of the lattice misfit between the underlayer and the magnetic layer, combined with the considerations of underlayer morphologies.  相似文献   

18.
A series of exchange-biased magnetic tunneling junctions (MTJs) were made in an in-plane deposition field (h) = 500 Oe. The deposition sequence was Si(1 0 0)/Ta(30 Å)/CoFeB(75 Å)/AlOx(d Å)/Co(75 Å)/IrMn(90 Å)/Ta(100 Å), where d was varied from 12 Å to 30 Å. The MTJ was formed by the cross-strip method with a junction area of 0.0225 mm2. The tunneling magnetoresistance (ΔR/R) of each MTJ was measured. The high-resolution cross-sectional transmission electron microscopic (HR X-TEM) image shows the very smooth interface and clear microstructure. X-ray diffraction (XRD) demonstrates that the IrMn layer of the MTJ exhibits a (1 1 1) texture. From the results (ΔR/R) increases from 17% to 50%, as d increases from 12 Å to 30 Å. The tunneling resistance (Ro) of these junctions ranges from 150 Ω to 250 Ω. The exchange-biasing field (Hex) of the MTJ is 50-95 Oe. Finally, the saturation resistance (Rs) was measured as a function of the angle (α) of rotation, where α is the angle between h and the in-plane saturation field (Hs) = 1.1 kOe. The following figure presents the dependence of Rs on α, instead of originally expected independence, the curve actually varies with a period of π.  相似文献   

19.
In the present study, we succeeded in accelerating the L10 ordering transition of FePt thin films by employing amorphous Ni-Al as underlayers. The coercivity Hc = 5 kOe and ordering parameter S = 0.67 of FePt thin films deposited on a Ni-Al underlayer with a thickness of ∼5 nm after 380 °C annealing for 30 min are significantly higher than those Hc = 0.4 kOe and S = 0.35 of the films without the Ni-Al underlayer. The L10 ordering process of and the coercivity of FePt thin films can be significantly tuned by varying the thickness of the Ni-Al underlayer.  相似文献   

20.
FePt films were deposited on Cr1-xMox underlayers by dc magnetron sputtering. The effects of the Mo content in the underlayers, underlayer thickness, substrate temperature, and FePt film thickness on the structural and magnetic properties of the FePt films were studied. Experimental results showed that the (200) textured Cr90Mo10 film was a promising underlayer for promoting the growth of the L10 FePt films with (001) preferred orientation at relatively low temperatures. With the Cr90Mo10 underlayers, the ordering process of the FePt films could start at 200 °C. Both the ordering degree and the out-of-plane coercivity (Hc) of the FePt films increased with an increase in substrate temperature. When the substrate temperature was ≥250 °C, the FePt films grown on the Cr90Mo10 underlayers could have the (001) preferred orientation. The FePt films grown on the Cr90Mo10 underlayers at different temperatures showed a continuous microstructure. The out-of-plane coercivities Hc decreased while the ordering degree increased with increased FePt film thickness, which could be due to the variation of the magnetic reversal mechanism from rotation predominant mode to domain wall motion predominant mode. PACS 68.55.Jk; 75.50.Ss  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号