首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
First of all, by using Bernoulli equations, we develop some technical lemmas. Then, we establish the explicit traveling wave solutions of five kinds of nonlinear evolution equations: nonlinear convection diffusion equations (including Burgers equations), nonlinear dispersive wave equations (including Korteweg-de Vries equations), nonlinear dissipative dispersive wave equations (including Ginzburg-Landau equation, Korteweg-de Vries-Burgers equation and Benjamin-Bona-Mahony-Burgers equation), nonlinear hyperbolic equations (including Sine-Gordon equation) and nonlinear reaction diffusion equations (including Belousov-Zhabotinskii system of reaction diffusion equations).  相似文献   

2.
3.
A new class of resonant dispersive shock waves was recently identified as solutions of the Kawahara equation— a Korteweg–de Vries (KdV) type nonlinear wave equation with third‐ and fifth‐order spatial derivatives— in the regime of nonconvex, linear dispersion. Linear resonance resulting from the third‐ and fifth‐order terms in the Kawahara equation was identified as the key ingredient for nonclassical dispersive shock wave solutions. Here, nonlinear wave (Whitham) modulation theory is used to construct approximate nonclassical traveling dispersive shock wave (TDSW) solutions of the fifth‐ order KdV equation without the third derivative term, hence without any linear resonance. A self‐similar, simple wave modulation solution of the fifth order, weakly nonlinear KdV–Whitham equations is obtained that matches a constant to a heteroclinic traveling wave via a partial dispersive shock wave so that the TDSW is interpreted as a nonlinear resonance. The modulation solution is compared with full numerical solutions, exhibiting excellent agreement. The TDSW is shown to be modulationally stable in the presence of sufficiently small third‐order dispersion. The Kawahara–Whitham modulation equations transition from hyperbolic to elliptic type for sufficiently large third‐order dispersion, which provides a possible route for the TDSW to exhibit modulational instability.  相似文献   

4.
The problem of the existence of stable solitary wave solutions for nonlinear Schrödinger-type equations with a generalized cubic nonlinearity is considered. These types of equations have recently arisen in the context of optical communications as averaging approximations to nonlinear dispersive equations with widely separated time scales. In this paper, it is shown that under general conditions on the kernel of the nonlocal term, stable standing wave solutions exist for these equations.  相似文献   

5.
Addressed here is the occurrence of point singularities which owe to the focusing of short or long waves, a phenomenon labeled dispersive blow-up. The context of this investigation is linear and nonlinear, strongly dispersive equations or systems of equations. The present essay deals with linear and nonlinear Schrdinger equations, a class of fractional order Schrdinger equations and the linearized water wave equations, with and without surface tension. Commentary about how the results may bear upon the formation of rogue waves in fluid and optical environments is also included.  相似文献   

6.
An attempt has been made to obtain exact analytical traveling wave solution or simple wave solution of higher-order Korteweg–de Vries (KdV) equation by using tanh-method or hyperbolic method. The higher-order equation can be derived for magnetized plasmas by using the reductive perturbation technique. It is found that the exact solitary wave solution of higher-order KdV equation is obtained by tanh-method. Using this method, different kinds of nonlinear wave equations can be evaluated. The higher-order nonlinearity and higher-order dispersive effect can be observed from the solutions of the equations. The method is applicable for other nonlinear wave equations.  相似文献   

7.
二维色散长波方程组的精确解   总被引:2,自引:0,他引:2  
利用齐次平衡法给出了二维色散长波方程组的定态解、孤立波解与非孤立波解等几种显式精确解。这个方法也可用来寻找其它非线性发展方程的不同类型的精确解。  相似文献   

8.
Addressed here is the occurrence of point singularities which owe to the fo-cusing of short or long waves,a phenomenon labeled dispersive blow-up.The context of this investigation is linear and nonlinear,strongly dispersive equations or systems of equa-tions.The present essay deals with linear and nonlinear Schr(o)dinger equations,a class of fractional order SchrSdinger equations and the linearized water wave equations,with and without surface tension. Commentary about how the results may bear upon the formation of rogue waves in fluid and optical environments is also included.  相似文献   

9.
The results of a preliminary study of a particular nonlinear system of partial differential equations are presented. While much of this work pertains to two coupled nonlinear Schrödinger equations, it is believed that the properties found are representative of many other dispersive wave systems.  相似文献   

10.
This is the second in a two-part series of articles in which we analyze a system similar in structure to the well-known Zakharov equations from weak plasma turbulence theory, but with a nonlinear conservation equation allowing finite time shock formation. In this article we analyze the incompressible limit in which the shock speed is large compared to the underlying group velocity of the dispersive wave (a situation typically encountered in applications). After presenting some exact solutions of the full system, a multiscale perturbation method is used to resolve several basic wave interactions. The analysis breaks down into two categories: the nonlinear limit and the linear limit, corresponding to the form of the equations when the group velocity to shock speed ratio, denoted by ε, is zero. The former case is an integrable limit in which the model reduces to the cubic nonlinear Schrödinger equation governing the dispersive wave envelope. We focus on the interaction of a “fast” shock wave and a single hump soliton. In the latter case, the ε=0 problem reduces to the linear Schrödinger equation, and the focus is on a fast shock interacting with a dispersive wave whose amplitude is cusped and exponentially decaying. To motivate the time scales and structure of the shock-dispersive wave interactions at lowest orders, we first analyze a simpler system of ordinary differential equations structurally similar to the original system. Then we return to the fully coupled partial differential equations and develop a multiscale asymptotic method to derive the effective leading-order shock equations and the leading-order modulation equations governing the phase and amplitude of the dispersive wave envelope. The leading-order interaction equations admit a fairly complete analysis based on characteristic methods. Conditions are derived in which: (a) the shock passes through the soliton, (b) the shock is completely blocked by the soliton, or (c) the shock reverses direction. In the linear limit, a phenomenon is described in which the dispersive wave induces the formation of a second, transient shock front in the rapidly moving hyperbolic wave. In all cases, we can characterize the long-time dynamics of the shock. The influence of the shock on the dispersive wave is manifested, to leading order, in the generalized frequency of the dispersive wave: the fast-time part of the frequency is the shock wave itself. Hence, the frequency undergoes a sudden jump across the shock layer.In the last section, a sequence of numerical experiments depicting some of the interesting interactions predicted by the analysis is performed on the leading-order shock equations.  相似文献   

11.
有限变形弹性杆中三种非线性弥散波   总被引:4,自引:2,他引:2  
在一维弹性细杆拉压、扭转和弯曲波的经典线性理论基础上,分别计入有限变形和弥散效应,借助Hamilton变分原理,由统一的方法导出了3种非线性弥散波的演化方程.对3种演化方程进行了定性分析.结果表明,这些方程在相平面上存在同宿轨道或异宿轨道,分别相应于孤波解或冲击波解.根据齐次平衡原理,用Jacobi椭圆函数展开对这些演化方程进行了求解,在一定的条件下它们均可能存在孤立波解或冲击波解,这与方程的定性分析完全一致.  相似文献   

12.
A numerical method for simulating periodic travelling-wave solutions of some nonlinear dispersive wave equations is proposed. The construction of the scheme is based on an efficient computation of the elements that characterize these solutions: the initial profile and the velocity of the wave.  相似文献   

13.
In this paper, an algebraic method is devised to construct new Miura type transformations between integrable dispersive wave equations. The characteristic feature of our method lies in that the travelling wave solutions of an aimed equation can be determined by the solutions of a simpler equation directly. Our work is an attempt in searching for travelling solutions of complicate nonlinear equations.  相似文献   

14.
In this paper, a new extended Riccati equation rational expansion method is suggested to constructing multiple exact solutions for nonlinear evolution equations. The validity and reliability of the method is tested by its application to the dispersive long wave system and the Broer–Kaup–Kupershmidt system. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

15.
分离变量法是求解具有局域相干结构解的有效解析方法.考虑到传播介质的非均匀性和边界的不一致性,变系数(2+1)色散长波方程可以实际地描述宽广的河道或有限深的远海中非线性波的传播.解析研究了变系数(2+1)维色散长波方程.通过分离变量法,得到了该方程组的具有丰富结构的分离变量解.  相似文献   

16.
Geometric integrators are presented for a class of nonlinear dispersive equations which includes the Camassa-Holm equation, the BBM equation and the hyperelastic-rod wave equation. One group of schemes is designed to preserve a global property of the equations: the conservation of energy; while the other one preserves a more local feature of the equations: the multi-symplecticity.  相似文献   

17.
This paper describes some applications of a transformation which takes a system of two, first order, quasilinear, partial differential equations in two dependent and two independent variables into a similar system. Typically, the equations govern wave propagation in dispersive and dissipative systems. It is shown that certain nonlinear equations which are of current practical interest can be transformed into linear equations.  相似文献   

18.
We formulate a nonlinear wave equations that describe amplitude and pitch modulations of one-dimensional Alfvén waves propagating on a dispersive nonlinear plasma. The well-known fact that the ideal Alfvén wave can propagate on a homogeneous ambient magnetic field with conserving an arbitrary wave shape of any amplitude is explained by invoking the Casimirs stemming from a “topological defect” (or, a kernel) in the Poisson bracket operator of the ideal magnetohydrodynamic (MHD) system. Including the Hall term, however, the Alfvén waves are affected by the dispersive effect, and the aforementioned simplicity of the ideal Alfvén waves is greatly lost; an arbitrary wave can no longer propagate with a constant shape. Yet, we observe an integrable structure in the nonlinear modulation (induced by a compressible motion) of the Alfvén waves, which is described as nonlinear deformation of “Beltrami vortex” pertaining to the Casimirs.  相似文献   

19.
It is a fact that in auxiliary equation methods, the exact solutions of different types of auxiliary equations may produce new types of exact travelling wave solutions to nonlinear equations. In this manner, various auxiliary equations of first-order nonlinear ordinary differential equation with distinct-degree nonlinear terms are examined and, by means of symbolic computation, the new solutions of original auxiliary equation of first-order nonlinear ordinary differential equation with sixth-degree nonlinear term are presented. Consequently, the novel exact solutions of the generalized Klein–Gordon equation and the active-dissipative dispersive media equation are found out for illustration purposes. They are also applicable, where conventional perturbation method fails to provide any solution of the nonlinear problems under study.  相似文献   

20.
助于符号计算软件Maple,通过一种构造非线性偏微分方程更一般形式行波解的直接方 法,即改进的广义射影Ricccati方程方法,求解(2 1)维色散长波方程,得到该方程的新的 更一般形式的行波解,包括扭状孤波解,钟状解,孤子解和周期解.并对部分新形式孤波解画 图示意.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号