首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
用分子图形软件设计出49种硫原子团簇Sn+(n=3~13)的结构,使用B3LYP密度泛函进行几何构型优化和振动频率计算,根据分子的总能量得出最稳定的同分异构体.在硫原子团簇正离子中,大部分原子为二配位成键.带有一、三配位的原子结构的总能量较高.部分最稳定硫原子团簇正离子的构型与最稳定的中性硫原子团簇的构型完全不同.  相似文献   

2.
原子团簇Ge_7的结构与稳定性   总被引:2,自引:0,他引:2  
用分子图形软件设计出多种锗原子团簇Ge7的模型,并进行B3LYP密度泛函几何构型优化和振动频率计算,得到8种稳定的同分异构体结构。在锗原子团簇中,大部分原子以三、四、五配位成键。根据分子的总能量,最稳定的Ge7构型为D5h构型。Ge7稳定结构中高配位原子越多,构型越稳定。  相似文献   

3.
用分子图形软件设计出多种Ge_11原子团簇模型,使用B3LYP密度泛函方法进行几何构型优化和振动频率计算,比较了14种同分异构体的总能量,得到了新的基态构型。锗原子团簇的大部分原子以三、四、五和六配位成键。在Ge11原子团簇中,双角反四棱柱衍生出来的构型能量较低,它是设计大分子锗原子团簇初始模型的重要结构单元。由三棱柱演变的构型能量居中。带心结构和共边构型带有高配位原子,其总能量较高,是不稳定的结构。  相似文献   

4.
金钯二元小团簇的几何结构与电子性质   总被引:1,自引:0,他引:1  
在UBP86/LANL2DZ和UB3LYP/def2-TZVP水平下详细研究了AumPdn(m+n≤6)团簇的几何结构和电子性质.阐明了团簇的结构特征、平均结合能、垂直电离势、垂直电子亲和能、电荷转移以及成键特征.除单取代混合团簇(AunPd和AuPdn,n=5或6)外,五和六原子混合团簇中钯原子趋于聚集到一起形成Pdcore,金原子分布在Pdcore周围形成PdcoreAushell结构.含一个和两个钯原子团簇的电子性质与纯金团簇类似,呈现一定奇偶振荡.混合团簇的电子性质,如最高占据分子轨道(HOMO),最低未占据分子轨道(LUMO),垂直电离势,垂直电子亲和能,Fermi能级和化学硬度等均与团簇空间结构和金、钯原子数之比直接相关.混合团簇中存在钯原子到金原子间的电荷转移,表明团簇中存在明显金钯间成键作用.分析团簇的电荷分布、前线轨道和化学硬度表明,金钯混合团簇对小分子如O2、H2和CO等的反应活性要强于纯金团簇.  相似文献   

5.
用分子图形软件设计出多种锗原子团簇Ge7的模型,并进行B3LYP密度泛函几何构型优化和振动频率计算,得到8种稳定的同分异构体结构。在锗原子团簇中,大部分原子以三、四、五配位成键。根据分子的总能量,最稳定的Ge7模型为D5h构型。Ge7稳定结构中高配位原子越多,构型越稳定。  相似文献   

6.
铝原子Bernal多面体团簇的理论研究   总被引:5,自引:0,他引:5  
将遗传算法用于铝原子团簇的构型计算.运用这种方法,从任意构型开始,较好地计算了6、8、9、10个铝原子组成的原子团簇的能量最低时的构型,发现这四种铝原子团簇的能量最低构型分别取四种Bernal多面体排列.并对得到的四种构型用密度泛函方法(DFT)进行量子化学计算,结果表明,这类构型是势能面上的极小值点,可以稳定存在.  相似文献   

7.
正、负和中性TiP10团簇结构与电子性质的密度泛函研究   总被引:2,自引:1,他引:1  
采用密度泛函理论的B3LYP方法研究了正、负和中性TiP10团簇的几何构型和电子结构. 计算结果表明, 中性TiP10团簇的基态构型为金属夹心结构, 正、负离子团簇同样具有该基态稳定结构. 通过对基态稳定结构的分子轨道分析表明, δ键对形成夹心结构起到重要作用. 理论计算得到的中性TiP10团簇的垂直和绝热电离能分别为7.84和7.68 eV, 垂直和绝热电子亲和势分别为3.18和3.35 eV.  相似文献   

8.
用密度泛函(DFT)方法(B3LYP/6-31G*)研究了硅硫团簇[(SiS2)nSiS]+(n=1~3)的可能几何构型,得到各稳定构型的电子结构,并计算了相应的振动频率,预测了稳定构型的振动光谱.由其稳定构型的比较可在理论上预测团簇的生长规律,并可初步预测团簇的形成机理.  相似文献   

9.
《高等学校化学学报》2001,22(8):1355-1358
用密度泛函(DFT)方法(B3LYP/6-31+G*)研究了硅硫团簇[(SiS2)nS]-(n=1~4)的可能几何构型,得到各稳定构型的电子结构,并计算了相应的振动频率,预测了稳定构型的振动光谱.由其稳定构型的比较可在理论上预测团簇的生长规律,并可初步预测团簇的形成机理.  相似文献   

10.
用密度泛函(DFT)方法研究了硅硫团簇(SiS2)-n(n=1-5)的可能几何构型,并计算了相应的振动频率,得到稳定构型的振动光谱.比较其稳定构型可得到团簇的生长规律,由此可初步预测团簇的形成机理.  相似文献   

11.
Following recent studies which showed that the most stable structures for (ZnS)(n) clusters (n= 10-47) are the so-called "bubble clusters", in which all the atoms are three-coordinated, we have used simulated annealing techniques to find the most stable structure for a larger cluster, (ZnS)(60). We find an onion-like structure, with one small cluster enclosed inside a bigger one. The inner cluster has the structure of a sodalite cage. Bonding between the inner and the outer clusters creates a network of four-coordinated atoms.  相似文献   

12.
The stability and structures of titanium-doped gold clusters Au(n)Ti (n=2-16) are studied by the relativistic all-electron density-functional calculations. The most stable structures for Au(n)Ti clusters with n=2-7 are found to be planar. A structural transition of Au(n)Ti clusters from two-dimensional to three-dimensional geometry occurs at n=8, while the Au(n)Ti (n=12-16) prefer a gold cage structure with Ti atom locating at the center. Binding energy and second-order energy differences indicate that the Au(14)Ti has a significantly higher stability than its neighbors. A high ionization potential, low electron affinity, and large energy gap being the typical characters of a magic cluster are found for the Au(14)Ti. For cluster-cluster interaction between magic transition-metal-doped gold clusters, calculations were performed for cluster dimers, in which the clusters have an icosahedral or nonicosahedral structure. It is concluded that both electronic shell effect and relative orientation of clusters are responsible for the cluster-cluster interaction.  相似文献   

13.
The magic number behavior of ((CH(3))(3)N)(n)-H(+)-H(2)O clusters at n = 3 is investigated by applying infrared spectroscopy to the clusters of n = 1-3. Structures of these clusters are determined in conjunction with density functional theory calculations. Dissociation channels upon infrared excitation are also measured, and their correlation with the cluster structures is examined. It is demonstrated that the magic number cluster has a closed-shell structure, in which the water moiety is surrounded by three (CH(3))(3)N molecules. The ion core (protonated site) of the clusters is found to be (CH(3))(3)NH(+) for n = 1-3, but coexistence of an isomer of the H(3)O(+) ion core cannot be ruled out for n = 3. Large rearrangement of the cluster structures of n = 2 and 3 before dissociation, which has been suggested in the mass spectrometric studies, is confirmed on the basis of the structure determination by infrared spectroscopy.  相似文献   

14.
The 4s and 5s Rydberg excited states of NaAr(n)* clusters are investigated using a pseudopotential quantum-classical method. While NaAr(n) clusters in their ground state are known to be weakly bound van der Waals complexes with Na lying at the surface of the argon cluster, isomers in 4s or 5s electronically excited states of small NaAr(n)* clusters (n< or =10) are found to be stable versus dissociation. The relationship between electronic excitation and cluster geometry is analyzed as a function of cluster size. For both 4s and 5s states, the stable exciplex isomers essentially appear as sodium-centered structures with similar topologies, converging towards those of the related NaAr(n)+ positive ions when the excitation level is increased. This is consistent with a Rydberg-type picture for the electronically excited cluster, described by a central sodium ion solvated by an argon shell, and an outer diffuse electron orbiting around this NaAr(n)+ cluster core.  相似文献   

15.
The structures of electron-bound and neutral clusters of HF(H2O)n (n=1-3) were optimized at the level of second-order Moller-Plesset perturbation theory (MP2). Then, the energies were studied using the coupled cluster singles, doubles, and perturbative triples correction [CCSD(T)] method. The vertical detachment energies of the electron-bound clusters for n=1-3 are 60, 180, and approximately 300 meV, respectively. In the case of the n=3, two structures are competing energetically. The electron-bound clusters for n=1 and 2 are 1.5 and 1.8 kcal/mol more stable than the neutral, while that for n=3 is 0.6-0.9 kcal/mol less stable. The excess electron is stabilized in the surface-bound state of the dipole oriented structures of the hydrated acid clusters. Vibrational spectra of the electron-bound clusters are discussed.  相似文献   

16.
Results describing the interaction of a single sulfur atom with cationic gold clusters (Au(n) (+), n=1-8) using density functional theory are described. Stability of these clusters is studied through their binding energies, second order differences in the total energies, fragmentation behavior, and atom attachment energies. The lowest energy structures for these clusters appear to be three dimensional right from n=3. In most cases the sulfur atom in the structure of Au(n)S(+) is observed to displace the gold atom siting at the peripheral site of the Au(n) (+) cluster. The dissociation channels of Au(n)S(+) clusters follow the same trend as Au(n) (+) cluster, based on the even/odd number of gold atoms in the cluster, with the exception of Au(3)S(+). This cluster dissociates into Au and Au(2)S(+), signifying the relative stability of Au(2)S(+) cluster regardless of having an odd number of valence electrons. Clusters with an even number of gold atoms dissociate into Au and Au(n-1)(S)(+) and clusters with an odd number of gold atoms dissociate into Au(2) and Au(n-2)(S)(+) clusters. An empirical relation is found between the conduction molecular orbital and the number of atoms in the Au(n)S(+) cluster.  相似文献   

17.
The structural and thermodynamic properties of Na+(CH3CN)n, I-(CH3CN)n, and NaI(CH3CN)n clusters have been investigated by means of room-temperature Monte Carlo simulations with model potentials developed to reproduce the properties of small clusters predicted by quantum chemistry. Ions are found to adopt an interior solvation shell structure, with a first solvation shell containing approximately 6 and approximately 8 acetonitrile molecules for large Na+(CH3CN)n and I-(CH3CN)n clusters, respectively. Structural features of Na+(CH3CN)n are found to be similar to those of Na+(H2O)n clusters, but those of I-(CH3CN)n contrast with those of I-(H2O)n, for which "surface" solvation structures were observed. The potential of mean force calculations demonstrates that the NaI ion pair is thermodynamically stable with respect to ground-state ionic dissociation in acetonitrile clusters. The properties of NaI(CH3CN)n clusters exhibit some similarities with NaI(H2O)n clusters, with the existence of contact ion pair and solvent-separated ion pair structures, but, in contrast to water clusters, both types of ion pairs adopt a well-defined interior ionic solvation shell structure in acetonitrile clusters. Whereas contact ion pair species are thermodynamically favored in small clusters, solvent-separated ion pairs tend to become thermodynamically more stable above a cluster size of approximately 26. Hence, ground-state charge separation appears to occur at larger cluster sizes for acetonitrile clusters than for water clusters. We propose that the lack of a large Na+(CH3CN)n product signal in NaI(CH3CN)n multiphoton ionization experiments could arise from extensive stabilization of the ground ionic state by the solvent and possible inhibition of the photoexcitation mechanism, which may be less pronounced for NaI(H2O)n clusters because of surface solvation structures. Alternatively, increased solvent evaporation resulting from larger excess energies upon photoexcitation or major solvent reorganization on the ionized state could account for the observed solvent-selectivity in NaI cluster multiphoton ionization.  相似文献   

18.
We investigate the structures and magnetic properties of small Mn(n) clusters in the size range of 2-13 atoms using first-principles density functional theory. We arrive at the lowest energy structures for clusters in this size range by simultaneously optimizing the cluster geometries, total spins, and relative orientations of individual atomic moments. The results for the net magnetic moments for the optimal clusters are in good agreement with experiment. The magnetic behavior of Mn(n) clusters in the size range studied in this work ranges from ferromagnetic ordering (large net cluster moment) for the smallest (n=2, 3, and 4) clusters to a near degeneracy between ferromagnetic and antiferromagnetic solutions in the vicinity of n=5 and 6 to a clear preference for antiferromagnetic (small net cluster moment) ordering at n=7 and beyond. We study the details of this evolution and present a picture in which bonding in these clusters predominantly occurs due to a transfer of electrons from antibonding 4s levels to minority 3d levels.  相似文献   

19.
The geometries, stabilities, electronic properties, and magnetism of FeB(n) clusters up to n=10 are systematically studied with density functional theory. We find that our optimized structures of FeB(2), FeB(3), FeB(4), and FeB(5) clusters are more stable than those proposed in previous literature. The results show that it is favorable for the Fe atom to locate at the surface, not at the center of the cluster, and that FeB(4) and FeB(9) clusters exhibit high stability. For all the FeB(n) clusters studied, we find the charge transfer from Fe to B site and the coexistence of ionic and covalent bonding characteristics. The computed total magnetic moments of the lowest-energy structures oscillate with the cluster size and are quenched at n=4, 6, 8, and 10.  相似文献   

20.
用遗传算法结合经验势搜索了(AgI)n(n=3-15)团簇的可能稳定结构, 并用微正则分子动力学方法研究了它们的熔化行为. (AgI)n团簇的稳定结构主要以四元环和六元环相接的笼状结构为主. 大多数(AgI)n会在一个较大的温度范围内随温度升高结构不断扭曲, 原子间距涨落及动能涨落不断增大, 直到在某个温度下熔化, 结构变得完全无序. (AgI)6的结构具有很高的对称性, 熔化发生在一个较窄的温度范围. 对于(AgI)5, 会在熔化前较大的温度范围内发生最稳定结构与能量较高的环状异构体之间的转化, 并可能出现负热容现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号