首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Upconversion nanophosphors for small-animal imaging   总被引:1,自引:0,他引:1  
Zhou J  Liu Z  Li F 《Chemical Society reviews》2012,41(3):1323-1349
Rare-earth upconversion nanophosphors (UCNPs), when excited by continuous-wave near-infrared light, exhibit a unique narrow photoluminescence with higher energy. Such special upconversion luminescence makes UCNPs promising as bioimaging probes with attractive features, such as no auto-fluorescence from biological samples and a large penetration depth. As a result, UCNPs have emerged as novel imaging agents for small animals. In this critical review, recent reports regarding the synthesis of water-soluble UCNPs and their surface modification and bioconjugation chemistry are summarized. The applications of UCNPs for small-animal imaging, including tumor-targeted imaging, lymphatic imaging, vascular imaging and cell tracking are reviewed in detail. The exploration of UCNPs as multifunctional nanoscale carriers for integrated imaging and therapy is also presented. The biodistribution and toxicology of UCNPs are further described. Finally, we discuss the challenges and opportunities in the development of UCNP-based nanoplatforms for small-animal imaging (276 references).  相似文献   

2.
Upconversion nanoparticles (UCNPs) are a kind of unique optical material, that are able to emit ultraviolet (UV), visible or near infrared (NIR) luminescence upon NIR light excitation. Because of their excellent physic-chemical characters including enormous anti-Stokes spectral shift, high resistance to photobleaching, fairly long luminescent lifetime, excellent chemical stability, sharp emission band, and deep tissue penetration depth, UCNPs have become a useful tool in bioimaging, biosensing, as well as cancer therapy. In particularly, the emissions light from UCNPs can activate photosensitive molecules, which has the potential to realize the regulation of cell behaviors, including cell growth, adhesion and differentiation. This review consequently introduces the principle and achievements of UCNPs in biomedical field to the general readers for promoting both fundamental research and bio-applications of UCNPs. After the brief introduction of the physical mechanism of upconversion luminescence (UCL), we introduce several strategies to enhance the emissions brightness in detail, then discuss various biomedical applications of UCNPs.  相似文献   

3.
稀土上转换发光纳米材料的应用   总被引:1,自引:0,他引:1  
稀土上转换发光纳米材料(简称UCNPs)不仅光稳定性强、发射带窄、荧光寿命长、化学稳定性高、潜在生物毒性低,而且采用近红外连续激发光源激发还使其具有较大的光穿透深度、无光闪烁和光漂白、无生物组织自发荧光以及对生物组织几乎无损伤等显著优点,已经成为当前很多领域乃至交叉科学的应用研究热点。由于氟化物基质的UCNPs具有较高的发光效率,本文首先归纳总结了近年来氟化物UCNPs的主要合成及表面改性方法,然后重点综述了近年来UCNPs在免疫分析及生物传感、生物成像、载药、光动力理疗及热致理疗、光导开关和信息存储以及太阳能电池等方面的研究与应用进展。  相似文献   

4.
脱氧核糖核酸(DNA)的分子识别特性与功能使其在生物传感与成像领域得到了广泛应用. 另一方面, 得益于自身独特的光学性质, 镧系元素掺杂的上转换纳米颗粒在生物医学应用中备受关注. 特别地, 二者的有机结合可产生新的性质与功能, 在生物传感与成像领域展现出优势, 推动了该领域的发展. 本文综合评述了基于DNA与上转换纳米颗粒相结合的生物传感与成像技术的研究进展, 重点聚焦于相关方法的分类与设计原理, 简要概述了相关的应用研究, 并对该领域目前存在的挑战与未来的发展前景进行了讨论.  相似文献   

5.
A general and facile approach for tailoring the multicolor output and shapes of lanthanide-ion doped fluoride upconversion nanoparticles (UCNPs) within a given composition is presented. By adjusting the temperature and time in the thermolysis procedure, the color output and shapes of NaYF(4):20%Yb, 2%Er UCNPs can be readily manipulated. The nanoparticles were characterized through the use of transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and upconversion luminescence spectroscopy. It is shown that the relative intensities of green emissions gradually increased with the rise of temperature and prolongation of growth time under excitation of 980 nm, which resulted in multicolor output of NaYF(4):20%Yb, 2%Er UCNPs. Simultaneously, the shapes for UCNPs can also be controlled. TEM images, estimated micro-stress by Williamson-Hall methodology and a series of control experiments and analyses reveal that crystallinity is mainly responsible for the multicolor output of UCNPs. Based on the above method, the tailoring of color output is also successfully realized in Ho(3+) and Tm(3+) ions. It is expected that this method may be used to tune the physical properties of other nanoparticles, and these multicolored UCNPs are promising for applications in multiplexed bioimaging, biodetection, display, other optical technologies, etc.  相似文献   

6.
Developing multicolor upconversion nanoparticles (UCNPs) with the capability of regulating their emission wavelengths in the UV to visible range in response to external stimuli can offer more dynamic platforms for applications in high‐resolution bioimaging, multicolor barcoding, and driving multiple important photochemical reactions, such as photoswitching. Here, we have rationally designed single‐crystal core–shell‐structured UCNPs which are capable of orthogonal UV and visible emissions in response to two distinct NIR excitations at 808 and 980 nm. The orthogonal excitation–emission properties of such UCNPs, as well as their ability to utilize low‐power excitation, which attenuates any local heating from the lasers, endows the UCNPs with great potential for applications in materials and biological settings. As a proof of concept, the use of this UCNP for the efficient regulation of the two‐way photoswitching of spiropyran by using dual wavelengths of NIR irradiation has been demonstrated.  相似文献   

7.
Stimulus‐responsive drug release possesses considerable significance in cancer therapy. This work reports an upconversion‐luminescence‐fueled DNA–azobenzene nanopump for rapid and efficient drug release. The nanopump is constructed by assembling the azobenzene‐functionalized DNA strands on upconversion nanoparticles (UCNPs). Doxorubicin (DOX) is loaded in the nanopump by intercalation in the DNA helix. Under NIR light, the UCNPs emit both UV and visible photons to fuel the continuous photoisomerization of azo, which acts as an impeller pump to trigger cyclic DNA hybridization and dehybridization for controllable DOX release. In a relatively short period, this system demonstrates 86.7 % DOX release. By assembling HIV‐1 TAT peptide and hyaluronic acid on the system, targeting of the cancer‐cell nucleus is achieved for perinuclear aggregation of DOX and enhanced anticancer therapy. This highly effective drug delivery nanopump could contribute to chemotherapy development.  相似文献   

8.
稀土上转换纳米材料可以吸收近红外光并发射出可见光或紫外光,在生物传感领域得到了广泛研究。核酸适配体能高特异性和高亲和性地与靶标物结合,被广泛应用于生物传感、疾病诊断等领域。将稀土上转换纳米材料与核酸适配体结合构建的检测体系,可实现对目标物灵敏、高选择性的检测。本文介绍了近几年核酸适配体功能化的稀土上转换纳米材料在生物小分子、蛋白质、核酸、病原微生物、细胞等方面的应用,并展望了其在分析检测领域的发展前景。  相似文献   

9.
Lanthanide‐doped upconversion nanoparticles (UCNPs) have been an emerging and exciting research field in recent years due to their unique luminescent properties of converting near‐infrared light to shorter wavelength radiation. UCNPs offer excellent prospects in luminescent labeling, displays, bioimaging, bioassays, drug delivery, sensors, and anticounterfeiting applications. Along with the abundant studies and rapid progress in this area, UCNPs are promising to be a new class of luminescent probe owing to their special advantages over the conventional organic dyes and quantum dots. Among them, polymers play an important role to improve properties or endow new function of UCNPs such as for matrix materials, water solubility, linking active targeting molecules, biocompatibility, and stimuli‐responsive behavior. This article briefly reviews the compositions, optical mechanisms, architectures of upconversion nanocrystals and highlights the works on various functional UCNPs/polymer nanohybrids as well as many new interesting fruits in applications.

  相似文献   


10.
We reported a simple and universal strategy for DNA-mediated assembly of CdTe quantum dots (QDs) and lanthanide-doped upconversion nanoparticles (UCNPs). Such DNA-QD/UCNPs heterostructures not only maintains both fluorescent properties of QDs and upconversion luminescence behaviors of UCNPs, but also offers a polyvalent DNA surface, allowing for targeted dual-modality imaging of cancer cells using an aptamer  相似文献   

11.
Despite the successful application of upconversion nanoparticles (UCNPs), their low energy transfer efficiency is still a bottleneck to further applications. Here we design UCNPs with a multilayer structure, including an inert NaYF4:Gd core and an energy‐concentrating zone (ECZ), for efficient energy concentration. The ECZ is composed of an emitting layer of NaYF4:Yb,Er and an absorption layer of NaYF4:Nd,Yb with antenna IRDye 800CW to manipulate the energy transfer. The stable and tight packing of 800CW linked originally with a bisphosphonate ligand improves greatly the transfer efficiency. The proximity of the emitting layer to both surface antenna and accepter also decreases energy depletion. Compared to classical UCNPs, the ECZ UCNPs show 3600 times higher luminescence intensity with an energy transfer efficiency near 60 %. In proof‐of‐concept applications, this type of structure was employed for Hg2+ detection and for photodynamic therapy under hypoxic conditions.  相似文献   

12.
Gas therapy has attracted wide attention for the treatment of various diseases. However, a controlled gas release is highly important for biomedical applications. Upconversion nanoparticles (UCNPs) can precisely convert the long wavelength of light to ultraviolet/visible (UV/Vis) light in gas therapy for the controlled gas release owing to their unique upconversion luminescence (UCL) ability. In this review, we mainly summarized the recent progress of UCNP-based nanocomposites in gas therapy. The gases NO, O2, H2, H2S, SO2, and CO play an essential role in the physiological and pathological processes. The UCNP-based gas therapy holds great promise in cancer therapy, bacterial therapy, anti-inflammation, neuromodulation, and so on. Furthermore, the limitations and prospects of UCNP-based nanocomposites for gas therapy are also discussed.

UCNPs can convert the long wavelength of light to UV-Vis light for the controlled gas release owing to their unique upconversion luminescence (UCL) ability. This review summarized the recent progress of UCNP-based nanocomposites in gas therapy.  相似文献   

13.
Yuming Yang 《Mikrochimica acta》2014,181(3-4):263-294
Upconversion nanoparticles (UCNPs) represent a new class of fluorophores. Both the excitation and (anti-Stokes) emission wavelengths are in the long wave part of the spectrum so that their luminescence can deeply penetrate tissues and cause low photodamage in biological samples. Their large anti-Stokes shifts, sharp emission bands, zero auto-fluorescence from biological samples and high photostability renders them an ideal kind of fluorescent labels for a variety of analytical formats, for bioimaging in cancer therapy. This review covers the basic mechanisms of up-conversion luminescence, the methods for the synthesis and surface modification of biocompatible UCNPs, and aspects of the in vivo delivery of UCNPs. More specifically, we discuss (a) recent progress regarding UCNPs for multimodal targeted tumor imaging, (b) UCNP-based methods of biological detection and sensing, (c) the use of UCNPs in drug delivery, (d) applications in photodynamic therapy, photothermal therapy and radiotherapy. Finally, we are addressing challenges and opportunities of this quickly emerging field. Contains 362 references.
Figure
Schematic illustration of multifunctional UCNPs for biological applications  相似文献   

14.
It's of great importance for construction of upconversion nanoparticles (UCNPs)/semiconductor heterostructures activated by near infrared light, which have gained worldwide research interests owing to important applications in photocatalysis, solar cells, nanomedicine, and etc. In this review, we highlight the synthetic strategies developed to fabricate upconversion nanoparticles based heterostructures, such as chemical epitaxial growth method, electrospinning technique, self‐assembly method, hydrothermal method, and etc. Numerous examples are given concerning the use of the strategies to fabricate various microstructures/nanostructures incorporated with UCNPs and semiconductors materials. The latest advances and perspectives in the synthetic strategies and preparation of this kind of composite nanostructures are made.  相似文献   

15.
Magnetic liquid marbles have recently attracted extensive attention for various potential applications. However, conventional liquid marbles based on iron oxide nanoparticles are opaque and inadequate for photo‐related applications. Herein, we report the first development of liquid marbles coated with magnetic lanthanide‐doped upconversion nanoparticles (UCNPs) that can convert near‐infrared light into visible light. Apart from their excellent magnetic and mechanical properties, which are attractive for repeatable tip opening and magnetically directed movements, the resultant UCNP‐based liquid marbles can act as ideal miniature reactors for photodynamic therapy of cancer cells. This work opens new ways for the development of liquid marbles, and shows great promise for liquid marbles based on UCNPs to be used in a large variety of potential applications, such as photodynamic therapy for accelerated drug screening, magnetically guided controlled drug delivery and release, and multifunctional actuation.  相似文献   

16.
NaYF4:Er,Yb upconversion luminescent nanoparticles (UCNPs) were prepared by hydrothermal methods at 180 °C for 24 h. The X-ray diffraction (XRD) and TEM (transmission electron microscopy) images show that the resulting 60 nm UCNPs possess a hexagonal structure. In this work, maleic anhydride (MA) was grafted on the surface of UCNPs to induce hydrophilic properties. The photoluminescence spectra (PL) show upconversion emissions centered around 545 nm and 660 nm under excitation at 980 nm. The luminescent inks, including UCNPs@MA, polyvinyl alcohol (PVA), deionized water (DI), and ethylene glycol (EG), exhibit suitable properties for screen printing, such as high stability, emission intensity, and tunable dynamic viscosity. The printed patterns with a height of 5 mm and a width of 1.5 mm were clearly observed under the irradiation of a 980 nm laser. Our strategy provides a new route for the controlled synthesis of hydrophilic UCNPs, and shows that the UCNPs@MAs have great potential in applications of anti-counterfeiting packing.  相似文献   

17.
DNA‐modified lanthanide‐doped upconversion nanoparticles (DNA‐UCNPs) that combine the functions of DNA and the optical features of UCNPs have shown great promise in a wide range of fields. However, challenges remain in precisely tethering and orienting the DNA strands on the UCNP surface. Herein, we systematically investigate the sequence dependence of DNAs in their interactions with UCNPs, and reveal that poly‐cytosine (poly‐C) has high affinity for the UCNP surface. A general approach to synthesize monodispersed DNA‐UCNP conjugates is developed using poly‐C‐containing diblock DNA strands. The poly‐C segment of the DNA strand binds to the surfaces of UCNPs and the second segment is oriented perpendicularly on the UCNP surface, making the DNA‐UCNPs highly stable and monodispersed in aqueous solution. The dense layer of DNA on the UCNP surface enables the programmable assembly of UCNPs with other DNA‐functionalized nanoparticles or DNA origamis through hybridization, resulting in the formation of well‐organized complex structures.  相似文献   

18.
Herein, the nanoscaled ATP-responsive upconversion metal-organic frameworks(UCMOFs) are aqueousphase synthesized for co-delivery of therapeutic protein cytochrome c(Cyt c) and chemodrugs doxorubicin(DOX), achieving targeted combinational therapy of human cervical cancer. The UCMOFs are rationally fabricated by growing ZIF-90 on mesoporous silica-coated upconversion nanoparticles(UCNPs),in which the ZIF-90 layer attenuates the upconversion luminescence(UCL) and the rigid frameworks increase the s...  相似文献   

19.
Due to their unique photophysical properties, upconverting nanoparticles (UCNPs), i. e. particles capable of converting near-infrared (NIR) photons into tunable emissions in the range of ultraviolet (UV) to NIR, have great potential for use in various biomedical fields such as bioimaging, photodynamic therapy and bioanalytical applications. As far as biomedical applications are concerned, these materials have a number of advantageous properties such as brilliant luminescence and exceptional photostability. Very small “stealth” particles (sub-10 nm), which can circulate in the body largely undetected by the immune system, are particularly important for in vivo use. The fabrication of such particles, which simultaneously have a defined (ultrasmall) size and the required optical properties, is a great challenge and an area that is in its infancy. This minireview provides a concise overview of recent developments on appropriate synthetic methodologies to produce such UCNPs. Particular attention was given to the influence of both surfactants and dopants used to precisely adjust size, crystalline phase and optical properties of UCNPs.  相似文献   

20.
建立了一种利用碱基堆积原理并以上转换纳米粒子荧光作为内参的精准检测DNA的方法。该方法首先利用热分解法制备NaYF4:Yb,Er上转换荧光纳米颗粒(upconversion nanoparticles,UCNPs),再通过表面羧基化变性牛血清蛋白修饰后与氨基化探针核酸单链共价偶联,形成上转换荧光标记显示探针。最后再基于碱基堆积原理进行杂交检测。研究结果表明以NaYF4:Yb,Er荧光强度为内参,根据FAM/UCNP的强度比来定量检测目标DNA浓度比单一的以报告DNA中FAM荧光强度定量检测目标DNA浓度要更为精准,有效地避免了实验中出现的人为操作和仪器误差。本方法不需要进行扩增,检测底限可达到5 nmol·L-1,且在较大的浓度范围内有较好的线性关系,同时该方法也有着良好的特异性,能有效区分单碱基错配序列。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号