首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 31 毫秒
1.
鉴于光学零件高陡度凹曲面的抛光是光学加工的一个难题,轮带光学确定性抛光方法是解决此类零件抛光的有效方法之一;提出轮带光学抛光技术的原理和方法。研究了轮带光学抛光方法修形的可行性,采用五轴精密数控机床系统对一块直径Ф80 mm的K9玻璃平面样镜进行了修形试验,经过3次迭代修形使其面形精度均方根误差(RMS)由初始的0109 λ提高到0028 λ,平均每次收敛率达到13。实验结果表明,应用轮带光学抛光技术进行光学镜面修形,面形收敛速度较快,加工精度较高。本实验验证了轮带光学抛光技术的修形能力,为高陡度光学零件的抛光提供了研究基础。  相似文献   

2.
针对超薄光学元件在加工过程中因重力和磨头产生应力形变的特点,提出了一种高效、先进的超薄光学元件综合加工方法。该方法综合运用了精密铣磨、精密抛光、离子束修形等先进技术进行面形控制。在铣磨阶段采用受力分析和误差补偿的方法降低了元件变形引入的面形误差;在抛光阶段通过气囊抛光和沥青抛光的迭代实现了面形快速收敛;在离子束加工阶段充分利用其非接触、无应力的加工特点实现了高精度面形修正。实验选择径厚比为34(边长152 mm,厚度6.35 mm)的方形融石英材料进行加工实验。结果表明:在铣磨、抛光、修形阶段的各项指标都达到了精密光学元件的加工水平,最终的面形精度为PV=25 nm,RMS=1.5 nm。该加工方法可以广泛应用于超薄光学元件的高精度加工。  相似文献   

3.
应用离子束进行光学镜面确定性修形的实现   总被引:9,自引:3,他引:6  
为了克服传统光学镜面抛光方法的缺点,提出了应用离子束进行光学镜面修形的方法.介绍了离子束修形技术的原理和方法,并对离子束修形中涉及的关键技术进行了讨论.在自研的离子束修形设备上对一块直径φ98 mm的微晶玻璃平面样件进行了离子束修形试验,经过两次的迭代修形使其面形精度均方根误差由初始的0.136λ提高到0.010λ(λ=632.8nm),平均每次迭代的面形收敛率达到3.7.实验结果表明,应用离子束进行光学镜面修形无边缘效应、面形收敛快、加工精度高;由于离子束修形技术去除材料过程自身的特点,使数控离子束修形技术对非球面的加工和对平面的加工难度相当.  相似文献   

4.
张峰 《中国光学》2014,7(4):616-621
为实现纳米级面形精度光学平面镜的高效精密抛光,提出了一种由传统环带抛光技术和先进离子束抛光技术相结合的组合式加工方法。介绍了环带抛光技术和离子束抛光技术的原理,通过实验研究了离子束抛光的材料去除函数,并采用这种组合抛光方法对口径为150 mm的平面镜进行抛光,抛光后平面镜的面形误差和表面粗糙度分别达到1.217 nm RMS和0.506 nm RMS。实验结果表明,这种组合抛光技术适合纳米级面形精度光学平面镜的加工。  相似文献   

5.
光学镜面磁流变确定性修形的实现   总被引:1,自引:0,他引:1  
磁流变确定性修形具有高精度、高效率、高表面质量以及近零亚表面损伤的特点。介绍了磁流变修形技术的基本原理和方法,并对磁流变修形中涉及的关键技术进行了讨论。在自研的磁流变修形设备上采用水基磁流变抛光液对一块直径80mm的K9玻璃平面进行了磁流变修形实验。经过一次迭代修形(4.39min)使其面形精度峰谷(PV)误差由初始的0.144λ改善到0.06λ(λ=632.8nm),均方根(RMS)误差由初始的0.031λ改善到0.01λ,面形收敛率达到2.81,表面粗糙度RMS值达到0.345nm。实验结果表明,采用磁流变进行光学表面修形,面形收敛快,面形精度高,表面质量好,可广泛应用于高精度光学镜面加工。  相似文献   

6.
中小口径双非球面数控抛光技术研究   总被引:2,自引:1,他引:1       下载免费PDF全文
针对口径Φ62 mm双凸非球面透镜,进行了数控研磨和抛光技术研究.提出了规范性的加工工艺流程,实现了中小口径双非球面元件的高效、快速抛光.根据计算机控制光学表面成型技术,采用全口径抛光和小抛头修抛的两步抛光法,在抛光中对其面形误差进行多次反馈补偿,使被加工零件表面的面形精度逐步收敛.最终两面的面形精度均小于0.5 μm,中心偏差小于0.01 mm,满足了光学系统中对非球面元件的精度要求,并且在保证有较高面形精度和较好表面光洁度的同时,解决了双非球面中心偏差和中心厚度难以控制的加工技术难题.  相似文献   

7.
光学元件超精密气囊抛光关键技术研究现状   总被引:2,自引:1,他引:1  
空间光学元件对面形精度和表面质量有着极高的要求,气囊抛光采用了新型的抛光工具和特殊的运动形式,是一种高精度、高效率的光学元件加工方法,尤其适用于非球面的加工,具有广阔的应用前景.分析了气囊抛光技术的基本原理及该技术的发展过程,介绍了气囊抛光相关技术的研究情况和实验结果,对几项关键技术的研究现状进行综述,重点介绍材料去除特性、驻留时间控制算法、边缘精度控制以及最新开发的喷液抛光技术的研究情况.  相似文献   

8.
 为解决强激光系统中大口径光学元件抛光面形精度收敛困难的问题,提出了一种基于压力补偿原理的抛光面形快速收敛技术。利用独特的抛光垫修整技术,将抛光垫表面修整成特定形状,使工件与抛光垫的接触面产生不均匀的压力分布,并结合精确的抛光转速控制,以加快工件面形精度的收敛速度。实验结果表明,将抛光垫修整成微凸面形,可以有效避免抛光中元件过早塌边问题,能将大口径平面元件的初抛时间从数天缩短到6 h以内,元件面形精度提高到1个波长左右。  相似文献   

9.
王贵林  唐力  黎寿山  叶波 《应用光学》2022,43(4):766-771+818
为了满足空气动力学要求,采用共形薄壁结构的整流罩或光学窗口成为未来高速飞行器的发展趋势。但是这类零件在加工过程中,切削力会随着轴向位置发生改变,一次加工难以达到精度要求,需要通过在位测量、补偿加工来控制切削力变化所引起的面形误差。以超精密车床作为运动平台,设计高陡度薄壁光学零件的在位检测系统,研究测点分布的优化算法,实现测量效率和测量精度的统一;建立热变形误差修正模型,提高高陡度薄壁光学零件在位测量的精度。针对某型高陡度薄壁头罩,通过在位测量为补偿加工提供指导,将头罩表面误差由峰谷比(peak-tovalley,PV)3.1μm控制到PV 0.7μm,将同轴度控制到1.02μm,满足光学系统的性能要求。  相似文献   

10.
磁流变技术研究及其在光学加工中的应用   总被引:3,自引:0,他引:3  
康桂文  张飞虎  董申 《光学技术》2004,30(3):354-356
介绍了磁流变技术的基本原理及其应用。利用磁流变液在磁场作用下形成的高剪切应力,可以利用磁场形成可变硬度的磁流变液对光学零件进行可控的抛光加工。美国Rochester大学率先进行了应用磁流变液对光学零件进行抛光方面的研究。磁流变抛光获得的表面具有纳米级表面粗糙度。  相似文献   

11.
马占龙 《光学技术》2012,38(3):279-282
为实现高精度光学元件的面形修正,介绍了计算机控制光学加工技术的基本理论,通过实验法对其去除函数进行了提取,采用迭代法对驻留时间进行了求解,并采用邻域平均值法对边缘数据进行了平滑延拓。以一口径φ100mm的光学元件面形为例进行了模拟加工,得到了其驻留时间分布和加工后面形,加工1843.3min后其面形由初始的PV值243.132nm、rms值53.154nm降为PV值21nm、rms值1.6nm,面形精度改善明显。结果表明:所得去除函数可以用于高精度面形修正,但加工效率仍需提高,所用驻留时间求解方法精度较高,并且经平滑延拓后边缘效应得到有效控制,为后续的实际高精度面形修正提供了理论依据。  相似文献   

12.
针对传统单磨头磁流变抛光技术的不足,提出了一种新的双磨头磁流变抛光方法,并研制了一台八轴数控双磨头磁流变抛光机,具备了大口径平面、非球面及连续位相板的超精密、高效率加工能力。分别研究了大、小磨头材料去除特性及面形修正能力,不仅获得了稳定、有效的大、小抛光斑,而且获得了超精的大、小平面工艺样件。50 mm小平面经小磨头一次连续抛光,在 45 mm内其面形精度PV由0.21 收敛至0.08 、RMS由0.053 收敛至0.015 ;430 mm430 mm大平面经大磨头3次迭代抛光,在410 mm410 mm内其面形精度PV由0.4 收敛至0.1 、RMS由0.068 收敛至0.013 。由此表明,所研制的双磨头磁流变抛光机床具有较好的材料去除特性和较强的面形修形能力。  相似文献   

13.
徐乐  张春雷  代雷  张健 《中国光学》2016,9(3):364-370
本文提出一种高精度非回转对称非球面加工方法。首先,通过范成法铣磨出非回转对称非球面的最佳拟合球;然后,利用古典抛光修正小磨头确定抛光难以修正的中频误差;最后,利用高精度气囊抛光设备(IRP)精确对位精修面形,在不引入额外中频误差条件下,通过高精度对位检测技术实现非回转对称非球面高精度加工。将该方法应用于定点曲率半径为970.737 mm、k=-1、口径为106 mm三次非球面加工,降低了加工难度,提高了加工精度,面形误差收敛到1/30λ(RMS)。实验结果验证了本文加工方法的正确性和可行性,对高精度非回转对称非球面加工具有一定的指导意义。  相似文献   

14.
为了提高光学加工效率,缩短大口径光学元件制造周期,本文提出了一种具有公自转运动模式的新型高效抛光方式,对其结构、工作原理以及去除特性进行了研究。首先,介绍了公自转抛光装置机械结构及工作原理。接着,根据Hertz接触理论和Preston方程进行了去除函数建模,讨论了不同转速比情况下的去除函数形状。然后,根据理论模型进行了去除函数实验、工艺参数实验以及稳定性实验,研究了压入深度、转速等工艺参数对去除结果的影响。最后,进行了200 mm口径SiC工件的仿真加工。实验结果表明:在2 mm压入深度、200 rpm转速情况下,去除区域直径为19.23 mm,体去除率达到0.197 mm~3/min,去除效率高于同等去除区域大小的传统小磨头加工方式;仿真加工结果表明:SiC仿真镜经过3.7 h加工,面形从3.008λPV,0.553λRMS提高到0.065λPV,0.005λRMS,收敛效率为达到98.18%。  相似文献   

15.
研制了四种不同沥青和松香含量的光学沥青抛光胶,对其形貌、针入度、玻璃化转变温度、软化点和粘度等参量进行了表征。从组成和结构分析了抛光胶三种物理状态变化原因,将玻璃化转变温度和软化点作为其临界转变温度。实验研究了四种抛光胶对大口径激光玻璃的抛光效果,发现抛光胶中沥青和松香的质量分数分别为30%和70%时,抛光效果比较理想,在像散和表面疵病控制方面能够满足要求,可作为大口径激光玻璃抛光专用胶。  相似文献   

16.
能动抛光磨盘的有限元法分析   总被引:5,自引:3,他引:2       下载免费PDF全文
 能动磨盘在光学抛光时随磨盘移动位置和旋转角度不同而产生不同的变形以实时与大口径被抛光工件表面实现良好的吻合。模拟了能动磨盘的工作过程,探讨了用于光学抛光的可行性。以加工直径1.5m,f1/2的抛物面光学元件为例,用有限元法对能动磨盘能够产生的变形进行了仿真计算,结果表明能动磨盘能够以较高精度产生旋转对称或非对称的二次曲面。  相似文献   

17.
Zhanlong Ma  Lirong Peng  Junlin Wang 《Optik》2013,124(24):6586-6589
A new method of ultra-smooth uniform polishing was presented, which can avoid high-precision surface figure getting worse after ultra-smooth polishing. At first, the fundamental and process were introduced. Then the process was simulated with “Gauss” and “V” type removal function. It shows that there will be no significant influence on optical surface figure after ultra-smooth uniform polishing with any type removal function. To demonstrate the process, a high-precision Ø100 mm fused silica flat optical element was polished, which was prior figured by IBF. Its surface figure accuracy root-mean-square (rms) value is improved from initial 3.624 nm to final 3.393 nm, the mid-spatial frequency surface roughness rms value is improved from initial 0.477 nm to final 0.309 nm, and the high-spatial frequency surface roughness rms value is improved from initial 0.167 nm to final 0.0802 nm. At last, the surface quality of the lens was analyzed by power spectral density (PSD). The result indicates that the surface roughness of high-precision optical element could be improved by ultra-smooth uniform polishing method without the surface figure destroyed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号