首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The complexes [Cu(L(1))2] 1, [Fe(L(1))3] 3 and [Al(L(1))3] 4 [L(1) = CH(3)C(O)C(CN)C(O)CH(3)] have been prepared for use as metallo-ligands in mixed-metal coordination networks. Surprisingly, the nature of the copper precursor is important in the synthesis of 1, with the reaction between Cu(NO3)2.3H2O, HL(1) and NEt3 giving [Cu6(micro(3)-OMe)4(micro-OMe)2(L(1))6] 2 instead of the anticipated 1, which was obtained with CuCl2.2H2O under the same conditions. Compound 1 reacts with AgNO3 to form [Cu(L(1))2.AgNO3](infinity) 5, the structure of which contains one-dimensional chains in which Ag+ ions bridge between molecules of 1. These chains are cross-linked into ladders by bridging nitrates. The product obtained from the reaction of 3 and AgNO3 is crucially dependent on the solvent used. The reaction in methanol-acetone gives [Fe(L(1))3.AgNO3](infinity) 6, {[Fe2(micro-OMe)2(L(1))4.2AgNO3].CH(3)C(O)CH(3)}(infinity) 7 and [Fe2(micro-OMe)2(L(1))4.AgNO3](infinity) 8. Compounds 6 and 8 both have one-dimensional chain structures, whereas 7 has a two-dimensional layer structure. The reaction in methanol gives 6 and 8 as the major products and, in addition, small quantities of {[AgFe2(micro-OMe)2(L(1))4]OH.0.4H2O](infinity) 9. Compound 9 has a three-dimensional structure based on doubly interpenetrated PtS nets. Compounds 7-9 contain Fe2(micro-OMe)2(L(1))4 dimers, but the coordination properties of the dimers differ, with all the cyanides coordinated in 7 and 9 but one uncoordinated in 8. The orientation of the cyanide groups depends on the relative chirality of the iron centres. A transmetallation reaction occurs between 4 and AgNO3 to give [Ag(L(1))](infinity) 10, which has a two-dimensional layer structure. Compounds 2, 3 and 5-10 have been characterised by X-ray crystallography.  相似文献   

2.
Wong YL  Ng DK  Lee HK 《Inorganic chemistry》2002,41(20):5276-5285
A new series of cis-dioxomolybdenum(VI) complexes MoO(2)(L(n))Cl (n = 1-5) were prepared by the reaction of MoO(2)Cl(2)(DME) (DME = 1,2-dimethoxyethane) with 2-N-(2-pyridylmethyl)aminophenol (HL(1)) or its N-alkyl derivatives (HL(n)) (n = 2-5) in the presence of triethylamine. The new mu-oxo dimolybdenum compounds [MoO(2)(L(n))](2)O (n = 1, 4, 5, 7) were also prepared by treating the corresponding ligand HL(n) with MoO(2)(acac)(2) (acac = acetylacetonate) in warm methanolic solutions or (NH(4))(6)[Mo(7)O(24)].4H(2)O in the presence of dilute HCl. Treatment of MoO(2)(L(1))Cl or [MoO(2)(L(1))](2)O with the Grignard reagent Me(3)SiCH(2)MgCl gave the alkyl compound MoO(2)(L(1))(CH(2)SiMe(3)), which represents the first example of dioxomolybdenum(VI) alkyl complex supported by a N(2)O-type ancillary ligand. The analogous chloro and mu-oxo tungsten derivatives WO(2)(L(n))Cl (n = 6, 7) and [WO(2)(L(n))](2)O (n = 1, 4, 6, 7) were prepared by the reaction of WO(2)Cl(2)(DME) with HL(n) in the presence of triethylamine. Similar to their molybdenum analogues, the tungsten alkyl complexes WO(2)(L(n))(R) (n = 6, 7; R = Me, Et, CH(2)SiMe(3), C(6)H(4)(t)Bu-4) were synthesized by treating WO(2)(L(n))Cl or [WO(2)(L(n))](2)O (n = 6, 7) with the appropriate Grignard reagents. The catalytic properties of selected dioxo-Mo(VI) and -W(VI) chloro and mu-oxo complexes toward epoxidation of styrene by tert-butyl hydroperoxide (TBHP) were also investigated.  相似文献   

3.
Wang  Kai-ti  Wang  Yong-xia  Wang  Bin  Li  Yan-guo  Li  Yue-sheng 《高分子科学》2017,35(9):1110-1121
Several novel mono( ?-enaminoketonato) vanadium complexes bearing constrained cyclic skeleton, including[(C6H5)C6H3C(O) = C(CH2)nCH = N ― Ar]VCl2(THF)2(V3a: n = 1, Ar = C6H5; V4a: n = 2, Ar = C6H5; V4b: n = 2, Ar =C6F5; V4c: n = 2, Ar =(C3H7)2C6H3; V5a: n = 3, Ar = C6H5), were synthesized and their structure and properties were characterized. The structures of V4 c and V5 a in solid-state were further confirmed by X-ray crystallographic analysis.Density functional theory(DFT) results indicated that these complexes showed enhanced steric hindrance around the metal center as compared with the acyclic analogues. Upon activation with Et2 Al Cl and in the presence of ethyl trichloroacetate as a reactivator, all of the complexes exhibited high catalytic activities(107 g PE/(mol V·h)) toward ethylene polymerization, and the obtained polymers exhibited unimodal distributions(Mw/Mn = 2.0-2.3) even produced at elevated temperatures(70-100 °C) and prolonged reaction time. When MAO was employed as a cocatalyst, they only showed moderate catalytic activities(105 g PE/(mol V·h)), but the resulting polymers had higher molecular weights(168-241 kg/mol). These vanadium complexes with cyclic skeleton also showed high catalytic activities toward ethylene/norbornene copolymerization. The produced copolymers displayed approximate alternating structure at high in-feed concentration of norbornene. The catalytic capabilities of these complexes could be tuned conveniently by varying ligand structure. Furthermore, the cyclic voltammetry results also proved that these complexes exhibited better redox stabilities than the complexes bearing linear skeleton.  相似文献   

4.
Lutetium alkyl complexes [Lu(L)(CH(2)SiMe(3))(THF)(n)], which contain a sulfur-linked bis(phenolato) ligand such as 2,2'-thiobis(6-tert-butyl-4-methylphenolate) (L=tbmp, 1) or 1,4-dithiabutanediyl-bis(6-tert-butyl-4-methylphenolate) (L=etbmp, 2), were isolated from the reaction of the lutetium tris(alkyl) complex [Lu(CH(2)SiMe(3))(3)(THF)(2)] with H(2)L. The monomeric structures of these complexes were confirmed by X-ray diffraction studies, showing distorted octahedral geometry around the metal centre. The reaction of [Lu(tbmp)(CH(2)SiMe(3))(THF)(2)] (1) with alcohols ROH (R=iPr, CHPh(2), CPh(3)) results in the formation of the corresponding alkoxide complexes [Lu(tbmp)(OR)(THF)(n)] (4-6). With PhSiH(3) hydride complexes [Lu(L)(mu-H)(THF)(n)](2) (L=tbmp, 7; etbmp, 8) have been prepared in moderate to good yields. They adopt a dimeric form in the solid state as revealed by the X-ray crystal structure of 7. The reactivity of the hydride complexes and their catalytic activity in the ring-opening polymerisation of L-lactide and the hydrosilylation of alkenes are also discussed.  相似文献   

5.
Dipyrromethene ligand scaffolds were synthesized bearing large aryl (2,4,6-Ph(3)C(6)H(2), abbreviated Ar) or alkyl ((t)Bu, adamantyl) flanking groups to afford three new disubstituted ligands ((R)L, 1,9-R(2)-5-mesityldipyrromethene, R=aryl, alkyl). While high-spin (S=2), four-coordinate iron complexes of the type ((R)L)FeCl(solv) were obtained with the alkyl-substituted ligand varieties (for R=(t)Bu, Ad and solv=THF, OEt(2)), use of the sterically encumbered aryl-substituted ligand precluded binding of solvent and cleanly afforded a high-spin (S=2), three-coordinate complex of the type ((Ar)L)FeCl. Reaction of ((Ad)L)FeCl(OEt(2)) with alkyl azides resulted in the catalytic amination of C-H bonds or olefin aziridination at room temperature. Using a 5% catalyst loading, 12 turnovers were obtained for the amination of toluene as a substrate, while greater than 85% of alkyl azide was converted to the corresponding aziridine employing styrene as a substrate. A primary kinetic isotope effect of 12.8(5) was obtained for the reaction of ((Ad)L)FeCl(OEt(2)) with adamantyl azide in an equimolar toluene/toluene-d(8) mixture, consistent with the amination proceeding through a hydrogen atom abstraction, radical rebound type mechanism. Reaction of p-(t)BuC(6)H(4)N(3) with ((Ar)L)FeCl permitted isolation of a high-spin (S=2) iron complex featuring a terminal imido ligand, ((Ar)L)FeCl(N(p-(t)BuC(6)H(4))), as determined by (1)H NMR, X-ray crystallography, and (57)Fe Mo?ssbauer spectroscopy. The measured Fe-N(imide) bond distance (1.768(2) ?) is the longest reported for Fe(imido) complexes in any geometry or spin state, and the disruption of the bond metrics within the imido aryl substituent suggests delocalization of a radical throughout the aryl ring. Zero-field (57)Fe Mo?ssbauer parameters obtained for ((Ar)L)FeCl(N(p-(t)BuC(6)H(4))) suggest a Fe(III) formulation and are nearly identical with those observed for a structurally similar, high-spin Fe(III) complex bearing the same dipyrromethene framework. Theoretical analyses of ((Ar)L)FeCl(N(p-(t)BuC(6)H(4))) suggest a formulation for this reactive species to be a high-spin Fe(III) center antiferromagnetically coupled to an imido-based radical (J = -673 cm(-1)). The terminal imido complex was effective for delivering the nitrene moiety to both C-H bond substrates (42% yield) as well as styrene (76% yield). Furthermore, a primary kinetic isotope effect of 24(3) was obtained for the reaction of ((Ar)L)FeCl(N(p-(t)BuC(6)H(4))) with an equimolar toluene/toluene-d(8) mixture, consistent with the values obtained in the catalytic reaction. This commonality suggests the isolated high-spin Fe(III) imido radical is a viable intermediate in the catalytic reaction pathway. Given the breadth of iron imido complexes spanning several oxidation states (Fe(II)-Fe(V)) and several spin states (S=0→(3)/(2)), we propose the unusual electronic structure of the described high-spin iron imido complexes contributes to the observed catalytic reactivity.  相似文献   

6.
Using two 4-substitued triazole ligands, 4-(pyrid-2-yl)-1,2,4-triazole (L(1)) and 4-(pyrid-3-yl)-1,2,4-triazole (L(2)), a series of novel triazole-cadmium(II) complexes varying from zero- to three-dimensional have been prepared and their crystal structures determined via single-crystal X-ray diffraction. [Cd(2)(micro(2)-L(1))(3)(L(1))(2)(NO(3))(mu(2)-NO(3))(H(2)O)(2)](NO(3))(2).1.75H(2)O (1) is a binuclear complex containing bidendate, monodedate and free nitrate anions. When the bridging anions SCN(-) and dca (dca = N(CN)(2)(-)) were added to the reaction system of 1, one-dimensional (1D) [Cd(L(1))(2)(NCS)(2)](n) (2) and two-dimensional (2D) [Cd(L(1))(2)(dca)(2)](n) (3) were isolated, respectively. When L(2) instead of L(1) was used, [Cd(L(2))(2)(NCS)(2)(H(2)O)(2)] (4) and 1D [Cd(L(2))(2)(dca)(2)](n) (5) were obtained. When the ratio of Cd to L(2) was changed from 1:2 to 1:1 in the reaction system of 5, three-dimensional (3D) {[Cd(3)(micro(2)-L(2))(3)(dca)(6)].0.75H(2)O}(n) (6) with 1D microporous channels along the a direction was isolated. Further investigations on other Cd(ii) salts and the L(2) ligand in a Cd to L(2) ratio of 1:1, an unexpected complex [Cd(mu(2)-L(2))(mu(3)-SO(4))(H(2)O)](n) (7) with a 3D open framework was obtained. All of the complexes exhibit strong blue fluorescence emission bands in the solid state at ambient temperature, of which the excitation and emission maxima are red-shifted to longer wavelength as compared to those in water. Powder X-ray diffraction and thermal studies were used to investigate the bulk nature of the 3D coordination polymers 6 and 7.  相似文献   

7.
A predictive approach using fractal analysis is presented for analyte-receptor binding and dissociation kinetics for biosensor applications. Data taken from the literature may be modeled, in the case of binding using a single-fractal analysis or a dual-fractal analysis. The dual-fractal analysis represents a change in the binding mechanism as the reaction progresses on the surface. A single-fractal analysis is adequate to model the dissociation kinetics in the examples presented. Predictive relationships developed for the binding and the affinity (k(diss)/k(bind)) as a function of the analyte concentration are of particular value since they provide a means by which the binding and the affinity rate coefficients may be manipulated. Relationships are also presented for the binding and the dissociation rate coefficients and for the affinity as a function of their corresponding fractal dimension, D(f), or the degree of heterogeneity that exists on the surface. When analyte-receptor binding or dissociation is involved, an increase in the heterogeneity on the surface (increase in D(f)) leads to an increase in the binding and in the dissociation rate coefficient. It is suggested that an increase in the degree of heterogeneity on the surface leads to an increase in the turbulence on the surface owing to the irregularities on the surface. This turbulence promotes mixing, minimizes diffusional limitations, and leads subsequently to an increase in the binding and in the dissociation rate coefficient. The binding and the dissociation rate coefficients are rather sensitive to the degree of heterogeneity, D(f,bind) (or D(f1)) and D(f,diss), respectively, that exists on the biosensor surface. For example, the order of dependence on D(f,bind) (or D(f1)) and D(f2) is 6.69 and 6.96 for k(bind,1) (or k(1)) and k(2), respectively, for the binding of 0.085 to 0.339 μM Fab fragment 48G7(L)48G7(H) in solution to p-nitrophenyl phosphonate (PNP) transition state analogue immobilized on a surface plasmon resonance (SPR) biosensor. The order of dependence on D(f,diss) (or D(f,d)) is 3.26 for the dissociation rate coefficient, k(diss), for the dissociation of the 48G7(L)48G7(H)-PNP complex from the SPR surface to the solution. The predictive relationships presented for the binding and the affinity as a function of the analyte concentration in solution provide further physical insights into the reactions on the surface and should assist in enhancing SPR biosensor performance. In general, the technique is applicable to other reactions occurring on different types of biosensor surfaces and other surfaces such as cell-surface reactions. Copyright 2000 Academic Press.  相似文献   

8.
Chen CH  Lee GH  Liaw WF 《Inorganic chemistry》2006,45(5):2307-2316
The shift of the IR nu(S)(-)(H) frequency to lower wavenumbers for the series of complexes [Ni(II)(L)(P-(o-C6H4S)2(o-C6H4SH))]0/1- (L = PPh3 (1), Cl (6), Se-p-C6H4-Cl (5), S-C4H3S (7), SePh (4)) indicates that a trend of increasing electronic donation of the L ligands coordinated to the Ni(II) center promotes intramolecular [Ni-S...H-S] interactions. Compared to the Ni...S(H) distance, in the range of 3.609-3.802 A in complexes 1 and 4-7, the Ni...S(CH3) distances of 2.540 and 2.914 A observed in the [Ni(II)(PPh3)(P(o-C6H4S)2(o-C6H4-SCH3))] complexes (8a and 8b, two conformational isomers with the chemical shift of the thioether methyl group at delta 1.820 (-60 degrees C) and 2.109 ppm (60 degrees C) (C4D8O)) and the Ni...S(CH3) distances of 3.258 and 3.229 A found in the [Ni(II)(L)(P(o-C6H4S)2(o-C6H4-SCH3))]1- complexes (L = SPh (9), SePh (10)) also support the idea that the pendant thiol protons of the Ni(II)-thiol complexes 1/4-7 were attracted by both the sulfur of thiolate and the nickel. The increased basicity (electronic density) of the nickel center regulated by the monodentate ligand attracted the proton of the pendant thiol effectively and caused the weaker S...H bond. In addition, the pendant thiol interaction modes in the solid state (complexes 1a and 1b, Scheme 1) may be controlled by the solvent of crystallization. Compared to complex 1a, the stronger intramolecular [Ni-S...H-S] interaction (or a combination of [Ni-S...H-S]/[Ni...H-S] interactions) found in complexes 4-7 led to the weaker S-H bond strength and accelerated the oxidation (by O2) of complexes 4-7 to produce the [Ni(Y)(L)(P(o-C6H4S)3)]1- (L = Se-p-C6H4-Cl (11), SePh (12), S-C4H3S (13)) complexes.  相似文献   

9.
To explore the relationships between the structures of ligands and their complexes, we have synthesized and characterized a series of metal complexes with two structurally related ligands, 9-acridinecarboxylic acid (HL(1)) and 4-quinolinecarboxylate acid (HL(2)), [Cu(2)(mu(2)-OMe)(2)(L(1))(2)(H(2)O)(0.69)](n) 1, [Cu(2)(L(1))(4)(CH(3)OH)(2)] 2, [Cu(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 3, [Mn(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 4, [Co(3)(L(1))(6)(CH(3)OH)(6)].3H(2)O 5, [Cu(L(2))(2)](n) 6, [Mn(L(2))(2)(H(2)O)](n) 7, and [Co(L(2))(2)(H(2)O)](n) 8. 1 is a three-dimensional (3D) polymer with an interpenetrating NbO type network showing one-dimensional (1D) channels, whereas 2 and 3 take bi- and trinuclear structures, respectively, because of the differences in basicity of the reaction systems in preparing the three complexes. 4 and 5 have trinuclear structures similar to that of 3. In 1-5, ligand L(1) performs different coordination modes with N,O-bridging in 1 and O,O'-bridging in 2-5, and the metal ions also show different coordination geometries: square planar in 1, square pyramidal in 2, and octahedral in 3-5. 6 has a two-dimensional structure containing (4,4) grids in which L(2) adopts the N,O-bridging mode and the Cu(II) center takes square planar geometry. 7 and 8 are isostructural complexes showing 1D chain structures, with L(2) adopting the O,O-bridging mode. In addition, the intermolecular O-H...N hydrogen bonds and pi-pi stacking interactions further extend the complexes (except 1 and 6), forming 3D structures. The magnetic properties of 2-7 have been investigated and discussed in detail.  相似文献   

10.
以二氰胺钠[Na(dca)]和异烟酰胺(L)为共配体分别与铜盐和镉盐反应合成了2种新的配合物:一维的[Cu(L)2(dca)2]·2MeOH(1)和二维的[Cd(L)2(dca)2](2)。通过元素分析和红外光谱进行了表征。X射线晶体结构分析表明配合物1属于三斜晶系,P1空间群,a=0.68007(6)nm,b=0.73759(6)nm,c=1.15405(10)nm,α=99.9550(10)°,β=90.3070(10)°,γ=103.2940(10)°,V=0.55428(8)nm3,Z=2。2属于单斜晶系,P21/c空间群,a=1.04377(7)nm,b=0.95630(6)nm,c=1.05593(7)nm,β=119.3330(10)°,V=0.91885(10)nm3,Z=4.1是一个中性的配位链,CuⅡ之间通过双μ1,5-dca桥而连接,L是单齿配位的。这些配位链通过链间的N-H…N氢键作用扩展为二维的层,甲醇分子位于层间,甲醇分子与酰胺基团之间的N-H…O,O-H…O氢键作用进一步将二维的层拓展为三维的网络。在2中,每个镉离子通过μ1,5-dca连接相邻的4个镉离子,从而形成了二维的(4,4)网,层与层之间通过酰胺基团之间的氢键作用扩展为三维的网络。  相似文献   

11.
Methanol solutions containing Cd(II), Mn(II), and a palladacycle, (dimethanol bis(N,N-dimethylbenzylamine-2C,N)palladium(II) (3), are shown to promote the methanolytic transesterification of O-methyl O-4-nitrophenyl phosphorothioate (2b) at 25 °C with impressive rate accelerations of 10(6)-10(11) over the background methoxide promoted reaction. A detailed mechanistic investigation of the methanolytic cleavage of 2a-d having various leaving group aryl substitutions, and particularly the 4-nitrophenyl derivative (2b), catalyzed by Pd-complex 3 is presented. Plots of k(obs) versus palladacycle [3] demonstrate strong saturation binding to form 2b:3. Numerical fits of the kinetic data to a universal binding equation provide binding constants, K(b), and first order catalytic rate constants for the methanolysis reaction of the 2b:3 complex (k(cat)) which, when corrected for buffer effects, give corrected (k(cat)(corr)) rate constants. A sigmoidal shaped plot of log(k(cat)(corr)) versus (s)(s)pH (in methanol) for the cleavage of 2b displays a broad (s)(s)pH independent region from 5.6 ≤ (s)(s)pH ≤ 10 with a k(minimum) = (1.45 ± 0.24) × 10(-2) s(-1) and a [lyoxide] dependent wing plateauing above a kinetically determined (s)(s)pK(a) of 12.71 ± 0.17 to give a k(maximum) = 7.1 ± 1.7 s(-1). Br?nsted plots were constructed for reaction of 2a-d at (s)(s)pH 8.7 and 14.1, corresponding to reaction in the midpoints of the low and high (s)(s)pH plateaus. The Br?nsted coefficients (β(LG)) are computed as -0.01 ± 0.03 and -0.86 ± 0.004 at low and high (s)(s)pH, respectively. In the low (s)(s)pH plateau, and under conditions of saturating 3, a solvent deuterium kinetic isotope effect of k(H)/k(D) = 1.17 ± 0.08 is observed; activation parameters (ΔH(Pd)(++) = 14.0 ± 0.6 kcal/mol and ΔS(Pd)(++)= -20 ± 2 cal/mol·K) were obtained for the 3-catalyzed cleavage reaction of 2b. Possible mechanisms are discussed for the reactions catalyzed by 3 at low and high sspH. This catalytic system is shown to promote the methanolytic cleavage of O,O-dimethyl phosphorothioate in CD3OD, producing (CD3O)2P═O(S(-)) with a half time for reaction of 34 min.  相似文献   

12.
The L232A mutation in triosephosphate isomerase (TIM) from Trypanosoma brucei brucei results in a small 6-fold decrease in k(cat)/K(m) for the reversible enzyme-catalyzed isomerization of glyceraldehyde 3-phosphate to give dihydroxyacetone phosphate. In contrast, this mutation leads to a 17-fold increase in the second-order rate constant for the TIM-catalyzed proton transfer reaction of the truncated substrate piece [1-(13)C]glycolaldehyde ([1-(13)C]-GA) in D(2)O, a 25-fold increase in the third-order rate constant for the reaction of the substrate pieces GA and phosphite dianion (HPO(3)(2-)), and a 16-fold decrease in K(d) for binding of HPO(3)(2-) to the free enzyme. Most significantly, the mutation also results in an 11-fold decrease in the extent of activation of the enzyme toward turnover of GA by bound HPO(3)(2-). The data provide striking evidence that the L232A mutation leads to a ca. 1.7 kcal/mol stabilization of a catalytically active loop-closed form of TIM (E(c)) relative to an inactive open form (E(o)). We propose that this is due to the relief, in L232A mutant TIM, of unfavorable steric interactions between the bulky hydrophobic side chain of Leu-232 and the basic carboxylate side chain of Glu-167, the catalytic base, which destabilize E(c) relative to E(o).  相似文献   

13.
A highly regio- and stereoselective ring-opening addition of alkenylzirconium reagents to bicyclic olefins catalyzed by nickel complexes was described. Treatment of 7-oxa- and 7-azabenzonorbornadienes (1a-e) with various terminal alkenylzirconium reagents 2a-f (Cp(2)ZrClCH=CHR; R = t-Bu, n-Pr, n-Oct, 1-cyclohexenyl, SiMe(3), and Ph) in the presence of Ni(PPh(3))(2)Cl(2) and Zn powder (or a combination of ZnCl(2) and NEt(3)) in dry THF at 50 degrees C afforded the corresponding cis-2-alkenyl-1,2-dihydronaphthalene derivatives 3a-l in moderate to excellent yields. Under similar reaction conditions, internal alkenylzirconium reagents 2g,h (Cp(2)ZrClCR=CHR: R = Et and n-Pr) also undergo ring-opening addition to oxanorbornadienes 1a and 1d to give cis-2-alkenyl-1,2-dihydronaphthalene derivatives 4a-c in good yields. Possible pathways involving the transfer of alkenyl group in the alkenylzirconium reagent to the Ni(II) center followed by migration of the alkenyl group from the Ni(II) center to the carbon-carbon double bond of 7-oxanorbornadiene or the reaction of 7-oxanorbornadiene with Ni(0) to form a Ni(II)-pi-allyl prior to the transfer of the alkenyl group as key steps for the catalytic reaction were proposed and discussed.  相似文献   

14.
Many nonheme iron-dependent enzymes activate dioxygen to catalyze hydroxylations of arene substrates. Key features of this chemistry have been developed from complexes of a family of tetradentate tripodal ligands obtained by modification of tris(2-pyridylmethyl)amine (TPA) with single alpha-arene substituents. These included the following: -C(6)H(5) (i.e., 6-PhTPA), L(1); -o-C(6)H(4)D, o-d(1)-L(1); -C(6)D(5), d(5)-L(1); -m-C(6)H(4)NO(2), L(2); -m-C(6)H(4)CF(3), L(3); -m-C(6)H(4)Cl, L(4); -m-C(6)H(4)CH(3), L(5); -m-C(6)H(4)OCH(3), L(6); -p-C(6)H(4)OCH(3), L(7). Additionally, the corresponding ligand with one alpha-phenyl and two alpha-methyl substituents (6,6-Me(2)-6-PhTPA, L(8)) was also synthesized. Complexes of the formulas [(L(1))Fe(II)(NCCH(3))(2)](ClO(4))(2), [(L(n)())Fe(II)(OTf)(2)] (n = 1-7, OTf = (-)O(3)SCF(3)), and [(L(8))Fe(II)(OTf)(2)](2) were obtained and characterized by (1)H NMR and UV-visible spectroscopies and by X-ray diffraction in the cases of [(L(1))Fe(II)(NCCH(3))(2)](ClO(4))(2), [(L(6))Fe(II)(OTf)(2)], and [(L(8))Fe(II)(OTf)(2)](2). The complexes react with tert-butyl hydroperoxide ((t)()BuOOH) in CH(3)CN solutions to give iron(III) complexes of ortho-hydroxylated ligands. The product complex derived from L(1) was identified as the solvated monomeric complex [(L(1)O(-))Fe(III)](2+) in equilibrium with its oxo-bridged dimer [(L(1)O(-))(2)Fe(III)(2)(mu(2)-O)](2+), which was characterized by X-ray crystallography as the BPh(4)(-) salt. The L(8) product was also an oxo-bridged dimer, [(L(8)O(-))(2)Fe(III)(2)(mu(2)-O)](2+). Transient intermediates were observed at low temperature by UV-visible spectroscopy, and these were characterized as iron(III) alkylperoxo complexes by resonance Raman and EPR spectroscopies for L(1) and L(8). [(L(1))Fe(II)(OTf)(2)] gave rise to a mixture of high-spin (S = 5/2) and low-spin (S = 1/2) Fe(III)-OOR isomers in acetonitrile, whereas both [(L(1))Fe(OTf)(2)] in CH(2)Cl(2) and [(L(8))Fe(OTf)(2)](2) in acetonitrile afforded only high-spin intermediates. The L(1) and L(8) intermediates both decomposed to form respective phenolate complexes, but their reaction times differed by 3 orders of magnitude. In the case of L(1), (18)O isotope labeling indicated that the phenolate oxygen is derived from the terminal peroxide oxygen via a species that can undergo partial exchange with exogenous water. The iron(III) alkylperoxo intermediate is proposed to undergo homolytic O-O bond cleavage to yield an oxoiron(IV) species as an unobserved reactive intermediate in the hydroxylation of the pendant alpha-aryl substituents. The putative homolytic chemistry was confirmed by using 2-methyl-1-phenyl-2-propyl hydroperoxide (MPPH) as a probe, and the products obtained in the presence and in the absence of air were consistent with formation of alkoxy radical (RO(*)). Moreover, when one ortho position was labeled with deuterium, no selectivity was observed between hydroxylation of the deuterated and normal isotopomeric ortho sites, but a significant 1,2-deuterium shift ("NIH shift") occurred. These results provide strong mechanistic evidence for a metal-centered electrophilic oxidant, presumably an oxoiron(IV) complex, in these arene hydroxylations and support participation of such a species in the mechanisms of the nonheme iron- and pterin-dependent aryl amino acid hydroxylases.  相似文献   

15.
Cationic platinum(II) complexes [((t)bpy)Pt(Ph)(L)](+) [(t)bpy =4,4'-di-tert-butyl-2,2'-bipyridyl; L = THF, NC(5)F(5), or NCMe] catalyze the hydrophenylation of ethylene to generate ethylbenzene and isomers of diethylbenzene. Using ethylene as the limiting reagent, an 89% yield of alkyl arene products is achieved after 4 h at 120 °C. Catalyst efficiency for ethylene hydrophenylation is diminished only slightly under aerobic conditions. Mechanistic studies support a reaction pathway that involves ethylene coordination to Pt(II), insertion of ethylene into the Pt-phenyl bond, and subsequent metal-mediated benzene C-H activation. Studies of stoichiometric benzene (C(6)H(6) or C(6)D(6)) C-H/C-D activation by [((t)bpy)Pt(Ph-d(n))(THF)](+) (n = 0 or 5) indicate a k(H)/k(D) = 1.4(1), while comparative rates of ethylene hydrophenylation using C(6)H(6) and C(6)D(6) reveal k(H)/k(D) = 1.8(4) for the overall catalytic reaction. DFT calculations suggest that the transition state for benzene C-H activation is the highest energy species along the catalytic cycle. In CD(2)Cl(2), [((t)bpy)Pt(Ph)(THF)][BAr'(4)] [Ar' = 3,5-bis(trifluoromethyl)phenyl] reacts with ethylene to generate [((t)bpy)Pt(CH(2)CH(2)Ph)(η(2)-C(2)H(4))][BAr'(4)] with k(obs) = 1.05(4) × 10(-3) s(-1) (23 °C, [C(2)H(4)] = 0.10(1) M). In the catalytic hydrophenylation of ethylene, substantial amounts of diethylbenzenes are produced, and experimental studies suggest that the selectivity for the monoalkylated arene is diminished due to a second aromatic C-H activation competing with ethylbenzene dissociation.  相似文献   

16.
Catalytically competent Ir, Re, and Ru complexes H(2)L(1)-H(2)L(6) with dicarboxylic acid functionalities were incorporated into a highly stable and porous Zr(6)O(4)(OH)(4)(bpdc)(6) (UiO-67, bpdc = para-biphenyldicarboxylic acid) framework using a mix-and-match synthetic strategy. The matching ligand lengths between bpdc and L(1)-L(6) ligands allowed the construction of highly crystalline UiO-67 frameworks (metal-organic frameworks (MOFs) 1-6) that were doped with L(1)-L(6) ligands. MOFs 1-6 were isostructural to the parent UiO-67 framework as shown by powder X-ray diffraction (PXRD) and exhibited high surface areas ranging from 1092 to 1497 m(2)/g. MOFs 1-6 were stable in air up to 400 °C and active catalysts in a range of reactions that are relevant to solar energy utilization. MOFs 1-3 containing [Cp*Ir(III)(dcppy)Cl] (H(2)L(1)), [Cp*Ir(III)(dcbpy)Cl]Cl (H(2)L(2)), and [Ir(III)(dcppy)(2)(H(2)O)(2)]OTf (H(2)L(3)) (where Cp* is pentamethylcyclopentadienyl, dcppy is 2-phenylpyridine-5,4'-dicarboxylic acid, and dcbpy is 2,2'-bipyridine-5,5'-dicarboxylic acid) were effective water oxidation catalysts (WOCs), with turnover frequencies (TOFs) of up to 4.8 h(-1). The [Re(I)(CO)(3)(dcbpy)Cl] (H(2)L(4)) derivatized MOF 4 served as an active catalyst for photocatalytic CO(2) reduction with a total turnover number (TON) of 10.9, three times higher than that of the homogeneous complex H(2)L(4). MOFs 5 and 6 contained phosphorescent [Ir(III)(ppy)(2)(dcbpy)]Cl (H(2)L(5)) and [Ru(II)(bpy)(2)(dcbpy)]Cl(2) (H(2)L(6)) (where ppy is 2-phenylpyridine and bpy is 2,2'-bipyridine) and were used in three photocatalytic organic transformations (aza-Henry reaction, aerobic amine coupling, and aerobic oxidation of thioanisole) with very high activities. The inactivity of the parent UiO-67 framework and the reaction supernatants in catalytic water oxidation, CO(2) reduction, and organic transformations indicate both the molecular origin and heterogeneous nature of these catalytic processes. The stability of the doped UiO-67 catalysts under catalytic conditions was also demonstrated by comparing PXRD patterns before and after catalysis. This work illustrates the potential of combining molecular catalysts and MOF structures in developing highly active heterogeneous catalysts for solar energy utilization.  相似文献   

17.
Self-assembly of the linear segmental ligand L5, consisting of a tridentate binding unit flanked with two bidentate binding units, with a mixture of Fe(II)/Ag(I) yields the trinuclear coordination-captured [2]catenate [AgFeAg(L5)(2)](4+) instead of the planned isomeric double-stranded helicate. Replacing the octahedral (Fe(II)) and tetrahedral (Ag(I)) cations with Zn(II), which is compatible with both geometries, gives intricate mixtures of homometallic complexes upon reaction with the twin ligand L6, from which the macrocyclic dinuclear complex [Zn(2)(L6)](4+) can be isolated. Application of the thermodynamic site binding model attributes the origin of the ligand preference for producing single-stranded macrocycles, the precursors of the trinuclear catenate, to the abnormally low value of the effective molarity controlling the intramolecular connection leading to the usual double-stranded helical isomer.  相似文献   

18.
基于同源建模建立了Bacillus cereus胺脱氢酶(BcAmDH)的三维结构, 采用半理性设计方法, 对底物结合口袋附近的8个氨基酸残基(L42, G43, M67, A115, E116, T136, V293和V296)分别进行单点饱和突变, 通过显色法筛选出3个正向突变位点(116, 136和293). 进一步采用迭代饱和突变策略对这3个正向位点进行组合突变, 获得最优突变株V293A/E116V/T136S, 其对苯乙酮还原反应的催化效率达到2.54 L·min-1·mmol-1, 比BcAmDH提高了719%; 与BcAmDH相比, 最优突变株在催化苯乙酮的不对称还原反应时, 底物浓度由100 mmol/L提高至300 mmol/L, 转化率由42.1%提高至80.2%. 分子对接结果表明, 突变株底物结合口袋的位阻减小和底物进出通道的扩大是提高催化效率的主要原因.  相似文献   

19.
A binding site optimisation protocol for the design of artificial enzymes based on "small molecule-small molecule" binding studies by diffusion NMR is presented. Since the reaction chosen was the hydrolysis of ester 1 ([4-(4-carboxy-1-oxobutyl)-aminobenzyl]-phenethyl ester), an analogous phosphonate ester 2 ([4-(4-carboxy-1-oxobutyl)-aminobenzyl]-phosphonic phenethyl ester) was selected as a suitable transition state analogue (TSA). The key objective of the NMR studies was to find a unit with functional groups capable of binding to the acidic sites of the TSA. Nine dipeptides, mainly with basic and hydroxyl groups, were used and their affinity to the TSA was studied by measuring the change in the diffusion coefficient, D(pep), upon binding by pulse field gradient NMR. The value of D(pep) at 298 K in D(2)O at pD 5, 7 and 10 was measured both in free solution, and mixtures containing one dipeptide and the TSA. As both components are low molecular weight species with M < 500, a TSA-to-dipeptide ratio of 10:1 was used to detect significant changes in D(pep). The results revealed that dipeptides with basic residues show higher affinity to the TSA than those with hydroxyl or aliphatic side chains in aqueous solutions. The dipeptide showing the most significant relative change in D(pep) was H-Arg-Arg-OH, and the binding constant was estimated to be 86 L M(-1) by measuring D(pep) at varying concentrations of the TSA. In addition, binding of the TSA to a new water-soluble polymer with a polyallylamine backbone and randomly distributed Arg-Arg binding sites was examined, and the binding constant was estimated to be > or =1500 L M(-1). As confirmed by further catalytic activity tests, polymers containing Arg-Arg as a binding site are capable of significant rate accelerations in the hydrolysis of ester 1.  相似文献   

20.
Variants of the beta-aminophosphine L(1) [Ph(2)PCH(2)CH(Ph)NHPh] containing additional nitrogen donor functions have been prepared. These functions are branched off the C atom adjacent to the P atom, or the P atom itself. Ligand [Ph(2)PCH(o-C(6)H(4)NMe(2))CH(Ph)NHPh] has been obtained as a mixture of two diastereomers L(3A) and L(3B) by lithiation of L(2) [Ph(2)PCH(2)(o-C(6)H(4)NMe(2))] with n-BuLi followed by PhCH=NPh addition and hydrolysis. The diastereomers have been separated by fractional crystallization from ethanol. Ligand Et(2)NCH(2)P(Ph)CH(2)CH(Ph)NHPh has been obtained as a mixture of two diastereomers L(5A) and L(5B)(starting with P-Ph reductive cleavage of L(1) by lithium and subsequent hydrolysis to give PhP(H)CH(2)CH(Ph)NHPh (mixture of two diastereomers L(4A) and L(4B)). The latter reacts with diethylamine and formaldehyde to afford the L(5) diastereomeric mixture. Complexes RhCl(CO)(L) (L = L(3A), 1(A); L(3B), 1(B); L(5A/B), 2(A/B)) were obtained by reaction of [RhCl(CO)(2)](2) and the appropriate ligand or ligand mixture. Complexes 1(A), 1(B), and 2(A) have been isolated in pure form and characterized by classical techniques and by single-crystal X-ray diffraction. All structures exhibit a bidentate kappa-P,kappa-N(NHPh) mode similar to the complex containing L(1). While complexes 1(A) or 1(B) are stable in CDCl(3) solution, complex 2(A) slowly converts to its diastereomer 2(B). This unexpected epimerization appears to take place by inversion at the Rh-coordinated P center, an apparently unprecedented phenomenon. A mechanism based on a reversible P-C bond oxidative addition is proposed. The influence of the pendant nitrogen function of the diaminophosphines L(3A) and L(5A/B) on the rhodium catalytic activity in styrene hydroformylation has been examined and compared to that of the aminophosphines L(1) or L(2). The observed trends are related to the basicity of the dangling amine function and to its proximity to the metal center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号