首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Y.P. Li  X.F. Zhu  J. Tan  W. Wang  B. Wu 《哲学杂志》2013,93(22):3049-3067
Plastic deformation behavior of Au/Cu multilayers with individual layer thicknesses of 25–250 nm was investigated via microindentation experiments. It was found that plastic instability of the Au/Cu multilayer exhibits strong length scale (individual layer thickness and grain size) dependence. The smaller the length scale, the easier shear bands form. In other words, plastic deformation becomes unstable with decreasing length scale. Cross-sectional observation along with plan-view indicates that the occurrence of plastic deformation instability corresponds to transformation of the deformation mechanism associated with geometrical configuration and length scale of the material. At nanometer scale, buckling-assisted interface crossing of dislocations results in local shear band, while, at submicron scale or above, local dislocation pileup-induced interface offset leads to plastic instability. Theoretical analysis is conducted to understand the length scale-dependent plastic deformation behavior of the multilayer.  相似文献   

2.
Mechanical and tribological properties of multilayers with nanometer thickness are strongly affected by interfaces formed due to mismatch of lattice parameters. In this study, molecular dynamics (MD) simulations of nanoindentation and following nanoscratching processes are performed to investigate the mechanical and tribological properties of Ni/Al multilayers with semi-coherent interface. The results show that the indentation hardness of Ni/Al multilayers is larger than pure Ni thin film, and the significant strength of Ni/Al multilayers is caused by the semi-coherent interface which acts as a barrier to glide of dislocations during nanoindentation process. The confinement of plastic deformation by the interface during nanoscratching on Ni/Al multilayers leads to smaller friction coefficient than pure Ni thin film. Dislocation evolution, interaction between gliding dislocations and interface, variations of indentation hardness and friction coefficient are studied.  相似文献   

3.
Ruizhi Li 《哲学杂志》2015,95(10):1029-1048
The interface-mediated plastic deformation mechanisms of a semi-coherent Cu–Ag bimetal nanolayered structure subjected to out-of-plane tension are characterized by molecular dynamics simulations. Results show that the initially planar Cu–Ag nanolayers abruptly become wavy at a critical tensile strain. This planar-to-wavy interlayer transition is facilitated by the low shear resistance of the Cu–Ag interlayer interface, which slides to accommodate the out-of-plane deformation. The process redistributes misfit dislocations along the interface to reduce the bending energy of the wavy structure. High stress concentrations subsequently develop at the summits and valleys of the wavy Cu–Ag interlayer interfaces, from which micro-twinning partials are emitted. These results demonstrate that the wavelength of the wavy Cu–Ag nanolayer structure forms a critical length scale for the localization of spatially periodic defect sources for twin nucleation. This planar-to-wavy interlayer transition mechanism is only activated in nanolayered metals with interfaces that are amenable to sliding prior to twin or dislocation emissions.  相似文献   

4.
Yuanyuan Tian 《中国物理 B》2022,31(6):66204-066204
Plastic-deformation behaviors of gradient nanotwinned (GNT) metallic multilayers are investigated in nanoscale via molecular dynamics simulation. The evolution law of deformation behaviors of GNT metallic multilayers with different stacking fault energies (SFEs) during nanoindentation is revealed. The deformation behavior transforms from the dislocation dynamics to the twinning/detwinning in the GNT Ag, Cu, to Al with SFE increasing. In addition, it is found that the GNT Ag and GNT Cu strengthen in the case of a larger twin gradient based on more significant twin boundary (TB) strengthening and dislocation strengthening, while the GNT Al softens due to more TB migration and dislocation nucleation from TB at a larger twin gradient. The softening mechanism is further analyzed theoretically. These results not only provide an atomic insight into the plastic-deformation behaviors of certain GNT metallic multilayers with different SFEs, but also give a guideline to design the GNT metallic multilayers with required mechanical properties.  相似文献   

5.
李锐  刘腾  陈翔  陈思聪  符义红  刘琳 《物理学报》2018,67(19):190202-190202
金属多层膜调制周期下降到纳米级时,其力学性质会发生显著改变. Cu-Ni晶格失配度约为2.7%,可以形成共格界面和半共格界面,实验中实现沿[111]方向生长的调制周期为几纳米且具有异孪晶界面结构的Cu/Ni多层膜,其力学性质发生显著改变.本文采用分子动力学方法对共格界面、共格孪晶界面、半共格界面、半共格孪晶界面等四种不同界面结构的Cu/Ni多层膜进行纳米压痕模拟,研究压痕过程中不同界面结构类型的形变演化规律以及位错与界面的相互作用,获取Cu/Ni多层膜不同界面结构对其力学性能的影响特征.计算结果表明,不同界面结构的样品在不同压痕深度时表现出的强化或软化作用机理不同,软化机制主要是由于形成了平行于界面的分位错以及孪晶界面的迁移,强化机制主要是由于界面对位错的限定作用以及失配位错网状结构与孪晶界面迁移时所形成的弓形位错之间的相互作用.  相似文献   

6.
During fabrication of metal nanowires, an oxide layer (shell) that surrounds the metal (core) may form. Such an oxide-covered nanowire can be viewed as a cylindrical core/shell nanostructure, possessing a crystal lattice mismatch between the core and shell. Experimental evidence has shown that, in response to this mismatch, mechanical stresses induce plastic deformation in the shell and misfit dislocations nucleate at the core/shell interface. As a result, the mechanical, electrical and optoelectronic properties of the nanowire are affected. It is therefore essential to be able to predict the critical conditions at which misfit dislocation nucleation at the nanowire interface takes place and the critical applied load at which the interface begins deforming plastically. Two approaches are explored in order to analyze the stress relaxation processes in these oxide-covered nanowires: (i) energy considerations are carried out within a classical elasticity framework to predict the critical radii (of the core and shell) at which dislocation nucleation takes place at the nanowire interface; (ii) a strain gradient plasticity approach is applied to estimate the flow stress at which the interface will begin deforming plastically (this stress is termed “interfacial-yield” stress). The interfacial-yield stress, predicted by gradient plasticity, depends, among other material parameters, on the radii of the core and shell. Both approaches demonstrate how the geometric parameters of nanowires can be calibrated so as to avoid undesirable plastic deformation; in particular, method (i) can give the radii values that prevent misfit dislocation formation, whereas method (ii) can provide, for particular radii values, the critical stress at which interface deformation initiates.  相似文献   

7.
We investigate deformation of pure Cu, pure Nb and 30?nm Cu/30?nm Nb nanolaminates induced by high strain rate shock loading. Abundant dislocation activities are observed in shocked pure Cu and Nb. In addition, a few deformation twins are found in the shocked pure Cu. In contrast, in shocked Cu/Nb nanolaminates, abundant deformation twins are found in the Cu layers, but only dislocations in the Nb layers. High resolution transmission electron microscopy reveals that the deformation twins in the Cu layers preferentially nucleate from the Cu(112)//Nb(112) interface habit planes rather than the predominant Cu(111)//Nb(110) interface planes. Our comparative study on the shock-induced plastic deformation of the pure metals (Cu and Nb) and the Cu/Nb nanolaminates underscores the critical role of heterogeneous phase interfaces in the dynamic deformation of multilayer materials.  相似文献   

8.
Cameron L. Hall 《哲学杂志》2013,93(29):3879-3890
In 1965, Armstrong and Head explored the problem of a pile-up of screw dislocations against a grain boundary. They used numerical methods to determine the positions of the dislocations in the pile-up and they were able to fit approximate formulae for the locations of the first and last dislocations. These formulae were used to gain insights into the Hall–Petch relationship. More recently, Voskoboinikov et al. used asymptotic techniques to study the equivalent problem of a pile-up of a large number of screw dislocations against a bimetallic interface. In this paper, we extend the work of Voskoboinikov et al. to construct systematic asymptotic expressions for the formulae proposed by Armstrong and Head. The further extension of these techniques to more general pile-ups is also outlined. As a result of this work, we show that a pile-up against a grain boundary can become equivalent to a pile-up against a locked dislocation in the case where the mismatch across the boundary is small.  相似文献   

9.
The plastic deformation of bulk nanotwinned copper with embedded cracks under tension has been explored by using molecular dynamics simulations. Simulation results show that the cracks mainly act as dislocation sources during the plastic deformation and occasionally as sinks at later stage. The dislocation pile-up, accumulation and transformation at twin boundaries (TBs) control the plastic hardening and softening deformations. The TB dislocation pile-up zone is estimated to be 5.6–8 nm, which agrees well with previous experimental and simulation results. Furthermore, it is found that the flow stress vs. dislocation density at the hardening stage follows the Taylor-type relationship.  相似文献   

10.
Sagi Sheinkman 《哲学杂志》2016,96(26):2779-2799
The prevention of strength degradation of components is one of the great challenges in solid mechanics. In particular, at high temperatures material may deform even at low stresses, a deformation mode known as deformation creep. One of the microstructural mechanisms that governs deformation creep is dislocation motion due to the absorption or emission of vacancies, which results in motion perpendicular to the glide plane, called dislocation climb. However, the importance of the dislocation network for the deformation creep remains far from being understood. In this study, a climb model that accounts for the dislocation network is developed, by solving the diffusion equation for vacancies in a region with a general dislocation distribution. The definition of the sink strength is extended, to account for the contributions of neighbouring dislocations to the climb rate. The model is then applied to dislocation dipoles and dislocation pile-ups, which are dense dislocation structures and it is found that the sink strength of dislocations in a pile-up is reduced since the vacancy field is distributed between the dislocations. Finally, the importance of the results for modelling deformation creep is discussed.  相似文献   

11.
Equations of dislocation kinetics are used to quantitatively compare the mechanisms of formation and evolution (with deformation) of cellular dislocation structures at moderate strains and of submicron block dislocation structures at high plastic strains. In both cases, the formation of nonuniform dislocation structures is a result of dislocation self-organization, more specifically, the self-organization of statistically random dislocations during the formation of cellular structures and the self-organization of geometrically necessary dislocations (which appear due to the nonuniform character of plastic deformation on the micron scale) during the formation of block structures.  相似文献   

12.
We have performed a transmission electron microscopy study, using weak beam imaging, of the interface dislocation arrays that form initially at the (001) Ni–Cu interface during coherency loss. Interface dislocations were absent in the 2.5?nm Ni/100?nm Cu bilayers, but were present in the 3.0?nm Ni samples, indicating that the critical Ni film thickness for coherency loss is between 2.5 and 3?nm. The key features of the interface dislocation structure at the onset of coherency loss are: (i) the majority of interface dislocations are 60° dislocations, presumably formed by glide of threading dislocations in the coherently stressed Ni layer, and have Burgers vector in the {111} glide plane; (ii) the interface contained approximately 5% Lomer edge dislocations, with Burgers vector in the {001} interface plane, and an occasional Shockley partial dislocation and (iii) isolated segments of interface dislocations terminating at the surface are regularly observed. Possible mechanisms that lead to these dislocation configurations at the interface are discussed. This experimental study shows that near the critical thickness, accumulation of interface dislocations occurs in a somewhat stochastic fashion with favourable regions where coherency is first lost.  相似文献   

13.
L. Fang  L. H. Friedman 《哲学杂志》2013,93(28):3321-3355
Metallic multilayers can be used as ultra-high strength coatings. They exhibit a very strong Hall–Petch-like size-effect where the mechanical strength depends on the layer thickness. This trend suggests that dislocation pileup theory can be used to predict the strength of multilayers from fundamental and microscopic material parameters. At large length scales, the behavior of multilayers can be described by a scaling law. At small length scales, the effect of discrete dislocations becomes important, and large deviation from the scaling law occurs. A complete analytic model should apply at all length scales and properly account for this dislocation discreteness effect. Such a model is proposed here. The layer thickness of multilayers are divided into four length-scale regimes, and simple analytic formulas are given for both the regime length scales and multilayer strength in each regime. The model is applied to Cu/Ni multilayers and the predicted strength is compared to experimental data. Furthermore, the predicted polycrystalline multilayer deformation map is presented.  相似文献   

14.
Ruizhi Li 《哲学杂志》2015,95(25):2747-2763
Stacking fault tetrahedra (SFTs) are volume defects that typically form by the clustering of vacancies in face-centred cubic (FCC) metals. Here, we report a dislocation-based mechanism of SFT formation initiated from the semi-coherent interfaces of Cu–Al nanoscale multilayered metals subjected to out-of-plane tension. Our molecular dynamics simulations show that Shockley partials are first emitted into the Cu interlayers from the dissociated misfit dislocations along the Cu–Al interface and interact to form SFTs above the triangular intrinsic stacking faults along the interface. Under further deformation, Shockley partials are also emitted into the Al interlayers and interact to form SFTs above the triangular FCC planes along the interface. The resulting dislocation structure comprises closed SFTs within the Cu interlayers which are tied across the Cu–Al interfaces to open-ended SFTs within the Al interlayers. This unique plastic deformation mechanism results in considerable strain hardening of the Cu–Al nanolayered metal, which achieves its highest tensile strength at a critical interlayer thickness of ~4 nm corresponding to the highest possible density of complete SFTs within the nanolayer structure.  相似文献   

15.
We perform MD simulations of the nanoindentation on (001) and (111) surfaces of Ag–Ni multilayers with different modulation periods, and find that both the hardness and maximum force increase with the increase of modulation period, in agreement with the inverse Hall–Petch relation. A prismatic partial dislocation loop is observed in the Ni(111)/Ag(111) sample when the modulation period is relatively large. We also find that misfit dislocation network shows a square shape for the Ni(111)/Ag(111) interface, while a triangle shape for the Ni(001)/Ag(001) interface. The pyramidal defect zones are also observed in Ni(001)/Ag(001) sample, while the intersecting stacking faults are observed in Ni(111)/Ag(111) sample after dislocation traversing interface. The results offer insights into the nanoindentation behaviors in metallic multilayers, which should be important for clarifying strengthening mechanism in many other multilayers.  相似文献   

16.
N. M. Ghoniem  X. Han 《哲学杂志》2013,93(24):2809-2830
Line integral forms for the elastic field of dislocations in anisotropic, multilayer materials are developed and utilized in Parametric Dislocation Dynamics (PDD) computer simulations. Developed equations account for interface image forces on dislocations as a result of elastic modulus mismatch between adjacent layers. The method is applied to study dislocation motion in multilayer thin films. The operation of dislocation sources, dislocation pileups, confined layer slip (CLS), and the loss of layer confinement are demonstrated for a duplex Cu/Ni system. The strength of a thin film of alternating nanolayers is shown to increase with decreasing layer thickness, and that the maximum strength is determined by the Koehler barrier in the absence of coherency strains. For alternating Cu/Ni nanolayers, the dependence of the strength on the duplex layer thickness is found to be consistent with experimental results, down to a layer thickness of ≈10nm.  相似文献   

17.

Kiritani et al. have observed a large number of small vacancy clusters without dislocations at the tip of torn portions of fcc metals such as Au, Ag, Cu and Ni. Small vacancy clusters, rather than dislocation cell structures, have also been observed after high-speed compressive deformation, suggesting the possibility of plastic deformation without dislocations. In this paper, in order to investigate the mechanism of deformation without dislocations, change in formation energy of point defects under high internal stress was estimated by computer simulation. Elastic deformation up to - 20% strain was found to provide a remarkable lowering of formation energy of point defects. For example, when Ni is subjected to elastic strain, the formation energy of an interstitial atom decreases to 40% that without strain and the formation energy of a vacancy decreases to 51% that without strain. The number of point defects formed under thermal equilibrium during deformation was evaluated. The number was judged to be insufficient for explaining the formation of vacancy clusters as observed in experiments.  相似文献   

18.
Abstract

The pile-up of dislocations between two low-angle tilt boundaries (LATB) in an fcc crystal was simulated using three-dimensional discrete dislocation dynamics. The LATB was constructed using glissile edge dislocations stacked on each other. The dislocations in the pile-up were chosen such that their reactions with the dislocations in the LATB resulted in glissile junctions. Parallel pairs of dislocations were inserted to a maximum allowable value estimated from theoretical expressions. A resolved shear stress was applied and increased in steps so as to move the dislocations in the pile-up towards the boundaries. The shear stress required to break the lead dislocation from the wall was determined for varying spacings between the two boundaries. The shear stress and boundary spacing followed the Hall–Petch type relation. Dislocation pile-ups without a LATB were also simulated. The spacing of the dislocations in the pile-up with LATB was found to be closer (ie higher dislocation density) than that without LATB. It was shown through analytical expressions that LATB exerts an attractive force on the dislocations in the pile-up thereby creating a denser pile-up.  相似文献   

19.
The achievement of both high strength and high electrical conductivity in bulk materials is challenging in the development of multifunctional materials, because the majority of the strengthening methods reduce the electrical conductivity of the materials significantly. At room temperature, dislocations have little scattering effect on conduction electrons. Thus, a high density of dislocations can strengthen conductors without significantly increasing the resistivity. However, at room temperature (RT), which is defined as 295?±?2?K in this paper, deformation can only introduce a limited number of dislocations in pure metals due to dislocation annihilation, i.e. recovery. This limitation is expanded by a well-controlled liquid nitrogen temperature (LNT), which is defined as 77?±?0.5?K in this paper, deformation process that permits accumulation of both nanotwins and a high density of dislocations accompanied by significantly less recovery than that in RT-deformed samples. The dislocations are organized into refined dislocation cells, with thicker cell boundaries in LNT-deformed samples than those deformed at RT. LNT deformation stores more energy in the material than RT deformation. LNT deformation produces bulk pure Cu with a yield strength about 1.5 times that of RT-deformed Cu. The RT resistivity increase is less than 5% compared with that of annealed Cu.  相似文献   

20.
基于准连续介质多尺度模拟方法研究了Ni/Cu双层薄膜初始压痕塑性的原子机制,结果主要包括:(1)当Ni晶体层厚度小于10nm时,随着Ni晶体层厚度的减少,薄膜弹性极限所对应的临界接触力逐渐降低,即Ni/Cu薄膜随Ni晶体层厚度减小而变软;(2)压头下方晶格Shockley分位错的开动、界面位错的分解、以及界面位错与晶格位错的相互作用是Ni/Cu薄膜初始塑性的微观原子机制,(3)根据模拟结果观察和位错弹性理论计算,承载初始塑性的界面位错数目变少是Ni/Cu薄膜软化的主要原子机制.本文研究结果能够为异质界面力学行为研究提供有益参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号