首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Point Defect Production Under High Internal Stress Without Dislocations in Ni and Cu
Authors:K Sato  T Yoshiie  Y Satoh  Q Xu  E Kuramoto  M Kiritani
Institution:1. Research Reactor Institute , Kyoto University , Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan;2. Research Institute for Applied Mechanics , Kyushu University , Kasuga-koen, Kasuga, 816-0811, Japan;3. Hiroshima Institute of Technology , Miyake 2-2-1, Saeki-ku, Hiroshima, 731-5193, Japan
Abstract:

Kiritani et al. have observed a large number of small vacancy clusters without dislocations at the tip of torn portions of fcc metals such as Au, Ag, Cu and Ni. Small vacancy clusters, rather than dislocation cell structures, have also been observed after high-speed compressive deformation, suggesting the possibility of plastic deformation without dislocations. In this paper, in order to investigate the mechanism of deformation without dislocations, change in formation energy of point defects under high internal stress was estimated by computer simulation. Elastic deformation up to - 20% strain was found to provide a remarkable lowering of formation energy of point defects. For example, when Ni is subjected to elastic strain, the formation energy of an interstitial atom decreases to 40% that without strain and the formation energy of a vacancy decreases to 51% that without strain. The number of point defects formed under thermal equilibrium during deformation was evaluated. The number was judged to be insufficient for explaining the formation of vacancy clusters as observed in experiments.
Keywords:Point Defect  Plastic Deformation  Thermal Equilibrium  Ni  Cu
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号