首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The DNA damage in intact Staphylococcus aureus and E. coli cells induced by photosensitized deuteroporphyrin or hemin is described. Treatment of S. aureus cultures with hemin or photosensitized deuteroporphyrin (Dp) caused time-dependent changes in the plasmidial DNA profiles. The major observation was the disappearance of the plasmid supercoiled fraction. The chromosomal DNA was also affected by hemin and by photosensitized Dp, since its degradation products were detected after exposing the bacterial cells to the porphyrin drugs. Photosensitization of E. coli cells, pretreated with Dp and polymyxin B nonapeptide (PMBNP), also resulted in plasmidial damage. No such damage occurred when E. coli cultures were treated with hemin and PMBNP. The above results can be tightly correlated with the antimicrobial action of porphyrins. Their damage to the bacterial DNA seems to reflect one of the in vivo effects of these porphyrins.  相似文献   

2.
以氯化血红素(Ⅰ)为原料,经过溴化氢-冰醋酸加成反应、羟基亲核取代反应和无水氯化氢催化酯化反应制得3,8-双-(1-羟基乙基)次卟啉二甲酯(Ⅲ),然后通过琼斯试剂氧化反应制备了3,8-双乙酰基次卟啉二甲酯(Ⅳ)。 考察了血红素与溴化氢-冰醋酸饱和溶液反应过程中温度和时间对3,8-双-(1-羟基乙基)次卟啉二甲酯(Ⅲ)产率的影响;改进了酯化反应的实验条件;选用了廉价易得、选择性较好的羟基选择性氧化剂。 实验结果表明,当反应温度为35 ℃、反应时间为25 h时,血卟啉(Ⅱ)的产率最高,为98.5%;当催化剂为无水氯化氢时产物(Ⅲ)的产率最高,为72.1%;使用琼斯试剂做氧化剂使实验成本大大降低。 通过1H NMR、MS和IR测试技术对产物结构进行了表征。  相似文献   

3.
以氯化血红素为原料, 经过脱铁、酯化、催化加氢和络合金属得到仿生催化剂Co(Ⅱ)-3,8-二乙基次卟啉二甲酯. 在无其它外加溶剂及共还原剂的条件下, 将其应用到催化空气氧化环己烷反应, 将实验结果同Co(Ⅱ)原卟啉二甲酯催化氧化空气氧化环己烷的结果进行对照, 并对催化氧化的机理进行了初步研究. 实验结果表明, Co(Ⅱ)-3,8-双乙基次卟啉二甲酯克服了Co(Ⅱ)原卟啉二甲酯3,8-位乙烯基取代基不稳定的缺点, 能够很好催化空气氧化环己烷, 环己醇和环己酮的总收率达16.9%.  相似文献   

4.
Dermatophytes are fungi that can cause infections (known as tinea) of the skin, hair and nails because of their ability to use keratin. Superficial mycoses are probably the most prevalent of infectious diseases worldwide. One of the most distinct limitations of the current therapeutic options is the recurrence of the infection and duration of treatment. The present study shows that Trichophyton rubrum in suspension culture is susceptible to photodynamic treatment (PDT), a completely new application in this area. T. rubrum could be effectively killed with the use of the light-activated porphyrins deuteroporphyrin monomethylester (DP mme) and 5,10,15-tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (Sylsens B). The photodynamic efficacy was compared with that of some other photosensitizers that are well known in the field of PDT: the porphyrins deuteroporphyrin and hematoporphyrin, the drug Photofrin and several phthalocyanines. It was demonstrated that with the use of broadband white light, the phthalocyanines and Photofrin displayed a fungistatic effect for about 1 week, whereas all the porphyrins caused photodynamic killing of the dermatophyte. Sylsens B was the most effective sensitizer and showed no dark toxicity; therefore, in an appropriate formulation, it could be a promising candidate for the treatment of various forms of tinea. For Sylsens B and DP mme, which displayed the best results, a concentration-dependent uptake by T. rubrum was established.  相似文献   

5.
A series of cobalt porphyrins derived from hemin was prepared as cytochrome P450 models. Effects of substituents at the cobalt deuteroporphyrin-propionate side chains are investigated in oxidation of toluene with air to benzaldehyde and benzyl alcohol without the use of solvent and sacrificial co-reductant. The catalytic activity of cobalt porphyrins depends on the type of substituents. When the electron-withdrawing groups like –Cl, –Br, were introduced into the double propionate side chains, they can increase the catalyst stability and selectivity to benzaldehyde. In comparison with these electron-withdrawing groups, the electron-donor groups, such as –CH3, –S–S– and –NH2 groups, can improve their catalytic activities. Moreover, the electron-donor group containing an unpaired electron (such as –S–S–, –NH2) is benefit for improving its catalytic efficiency and promoting the electron delivery. It can be concluded that the double propionate side chains in the deuteroporphyrin complex may participate in oxidation process and effect electron transfer from the high-valent metalloporphyrin species to the substrate.  相似文献   

6.
应用弱正弦波电磁场改变细胞膜的穿透性并引起其失活和坏死.研究中,将人类癌细胞U 937和K 562放置于强度为10mT和39mT(50Hz)的正弦波电磁场内,并依次结合细胞毒素放线菌素 C以及其独特的光动力活性分别进行试验.  相似文献   

7.
A series of diquinone derivatives of deuteroporphyrin IX, having different bond lengths between the chromophores, have been prepared. Deuteroporphyrin IX was condensed with modified hydroxyl-containing quinones by the mixed anhydride method. PMR spectroscopy was used to show that the magnetic anisotropy of the porphyrin ring has a strong effect on the chemical shift of the protons of the quinone ring and its neighboring substituents.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 608–616, May, 1988.  相似文献   

8.
Combination therapy is based on the beneficial effects of pharmacodynamic interaction (synergistic or additive) between combined drugs or substances. A considerable group of candidates for combined treatments are natural compounds (e.g., isothiocyanates) and their analogs, which are tested in combination with anticancer drugs. We tested the anticancer effect of the combined treatment of isothiocyanate 2-oxohexyl isothiocyanate and 5-fluorouracil in colon and prostate cancer cell lines. The type of interaction was described using the Chou-Talalay method. The cytostatic and cytotoxic activities of the most promising combined treatments were investigated. In conclusion, we showed that combined treatment with 5-fluorouracil and 2-oxohexyl isothiocyanate acted synergistically in colon cancer. This activity is dependent on the cytostatic properties of the tested compounds and leads to the intensification of their individual cytotoxic activity. The apoptotic process is considered to be the main mechanism of cytotoxicity in this combined treatment.  相似文献   

9.
G‐quadruplex (G4)/hemin DNAzymes have been extensively applied in bioanalysis and molecular devices. However, their catalytic activity is still much lower than that of proteinous enzymes. The G4/hemin DNAzyme activity is correlated with the G4 conformations and the solution conditions. However, little is known about the effect of the flanking sequences on the activity, though they are important parts of G4s. Here, we report sequences containing d(CCC), flanked on both ends of the G4‐core sequences remarkably enhance their DNAzyme activity. By using circular dichroism and UV‐visible spectroscopy, the d(CCC) flanking sequences were demonstrated to improve the hemin binding affinity to G4s instead of increasing the parallel G4 formation, which might explain the enhanced DNAzyme activity. Meanwhile, the increased hemin binding ability promoted the degradation of hemin within the DNAzyme by H2O2. Furthermore, the DNAzyme with d(CCC) flanking sequences showed strong tolerance to pH value changes, which makes it more suitable for applications requiring wide pH conditions. The results highlight the influence of the flanking sequences on the DNAzyme activity and provide insightful information for the design of highly active DNAzymes.  相似文献   

10.
Peroxynitrite (ONOO) constitutes a major cytotoxic agent, implicated in a host of pathophysiological conditions, thereby stimulating a tremendous interest in evaluating its role as an oxidant in vivo. Some of the detection methods for peroxynitrite include oxidation of fluorescent probes, EPR spectroscopy, chemiluminescence, immunohistochemistry, and probe nitration; however, these are more difficult to apply for real-time quantification due to their inherent complexity. The electrochemical detection of peroxynitrite is a simpler and more convenient technique, but the best of our knowledge there are only few papers to date studying its electrochemical signature, or reporting amperometric microsensors for peroxynitrite. Recently, we have reported the use of layered composite films of poly(3,4-ethylenedioxythiophene) (PEDOT) and hemin (iron protoporphyrin IX) as a platform for amperometric measurement of peroxynitrite. The main goal herein is to investigate the intrinsic catalytic role of hemin electropolymerized thin films on carbon electrodes in oxidative detection of peroxynitrite. The electrocatalytic oxidation of peroxynitrite is characterized by cyclic voltammetry. The catalytic current increased as a function of peroxynitrite's concentration, with a peak potential shifting positively with peroxynitrite's concentration. The catalytic efficiency decreased as the scan rate increased, and the peak potential of the catalytic oxidation was found to depend on pH. We show that optimized hemin-functionalized carbon electrodes can be used as simple platforms for peroxinitrite detection and quantification. We report dose–response amperometry as an electroanalytical determination of this analyte on hemin films and we contrast the intrinsic hemin catalytic role with its performance in the case of the PEDOT–hemin as a composite matrix. Finally, we include some work extending the use of simple hemin films for peroxynitrite determination on carbon microfiber electrodes in a flow system.  相似文献   

11.
《中国化学快报》2020,31(5):1153-1158
We herein propose a co-delivery approach where small interference RNA (siRNA) and anticancer chemotherapeutic drug are simultaneously loaded into a single delivery carrier for the combined treatment of breast cancer and metastasis prevention. The co-delivery vector is composed of chondroitin sulfate (CS)-coated β-cyclodextrin-polyethylenemine polymer, which is capable of loading paclitaxel (PTX) and siRNA simultaneously to form therapeutic nanocomplexes. The nanocomplex, termed as CP-PTX-siCD146-CS, is demonstrated to have strong active targeting ability towards CD44-overexpresing breast cancer cells. Moreover, the co-delivery of PTX and siRNA not only effectively inhibits cancer cells proliferation and induces apoptosis, but also well prevents metastasis. Importantly, CP-PTX-siCD146-CS nanocomplexes exhibit stronger cytotoxic effects and anti-metastatic effects on MBA-MD-231 breast cancer cells, in comparison with PTX or siCD146 mono-treatment. The current study defines a potential therapeutic strategy for the combined breast cancer treatment and metastasis prevention from a co-delivery perspective.  相似文献   

12.
INACTIVATION OF GRAM-NEGATIVE BACTERIA BY PHOTOSENSITIZED PORPHYRINS   总被引:5,自引:0,他引:5  
Photosensitization of Escherichia coli and Pseudomonas aeruginosa cells by deuteroporphyrin (DP) is shown to be possible in the presence of the polycationic agent polymyxin nonapeptide (PMNP). Previous studies established complete resistance of Gram-negative bacteria to the photodynamic effects of porphyrins. The present results show that combined treatment of E. coli or P. aeruginosa cultures with DP and PMNP inhibit cell growth and viability. No antibacterial activity of PMNP alone could be demonstrated and cell viability remained unchanged. Spectroscopically, PMNP was found to bind DP, a mechanism which probably assists its penetration into the cell's membranes. Insertion of DP into the cells was monitored by the characteristic fluorescence band of bound DP at 622 nm. Binding times were 5-40 min and the extent of binding increased with decreasing the pH from 8.5 to 6.5. DP binding constants, as well as the concentrations of PMNP which were required for maximal effect on the various Gram-negative bacteria, were determined fluorometrically. By the treatment of DP, PMNP and light the growth of E. coli and P. aeruginosa cultures was stopped and the viability of the culture was dramatically reduced. Within 60 min of treatment the survival fraction of E. coli culture was 9 x 10(-6) and that of P. aeruginosa was 5.2 x 10(-4). Electron microscopy depicted ultrastructural alterations in the Gram-negative cells treated by DP and PMNP. The completion of cell division was inhibited and the chromosomal domain was altered markedly.  相似文献   

13.
Luminol and hemin dual-functionalized silica nanoparticles were synthesized using a typical reverse water-in-oil microemulsion protocol. The obtained nanoparticles were further characterized by transmission electron microscopy, scanning electron microscopy, atomic absorption spectrometry, chemiluminescence, and electrochemiluminescence. The results indicated that the luminol and hemin dual-functionalized silica nanoparticles exhibited significantly higher chemiluminescence and electrochemiluminescence intensities than those of luminol functionalized silica nanoparticles due to the catalytic effect of hemin on the chemiluminescence and electrochemiluminescence of luminol. Furthermore, a simple and sensitive label-free electrochemiluminescence DNA biosensor was developed based on the chitosan modified luminol and hemin dual-functionalized silica nanoparticles and a single-stranded DNA probe. The chitosan modified luminol and hemin dual-functionalized silica nanoparticles were immobilized on the surface of an indium-doped tin oxide electrode and the single-stranded DNA probe was immobilized on the surface of the nanoparticles through electrostatic interactions between single-stranded DNA and chitosan, which allowed hybridization with the target DNA sequences. The hybridization events were evaluated by electrochemiluminescence, and only the complementary sequence formed double-stranded DNA with the DNA probe to give strong electrochemiluminescence signals. Finally, the electrochemiluminescence intensity was found to be linearly related to the concentration of the complementary sequence at concentrations from 1.0?×?10?12 to 1.0?×?10?6?mol·L?1 with a detection limit of 5.0?×?10?13?mol·L?1.  相似文献   

14.
The electrochemical behavior of tryptophan (Trp) and its derivatives, such as indole-3-acetic acid (IAA), 5-hydroxytryptamine (5-HT), 5-hydroxy-indole-3-acetic acid (5-HIAA) and glycyl-tryptophan (Gly-Trp) peptide at a glassy carbon electrode modified with hemin (hemin/GC electrode) by electropolymerization have been investigated in detail. The results showed that the hemin/GC electrode would catalyze the electrochemical oxidation of Trp and its derivatives, based on which a differential pulse voltammetric procedure has been proposed for determination of Trp and its derivatives. Meanwhile, the electrochemical reaction mechanism for these compounds at hemin/GC electrode has been also investigated, and the results indicated that a two electron and two proton transfer was involved in the electrode reaction process.  相似文献   

15.
The development of small-molecule probes suitable for live-cell applications remains challenging yet highly desirable. We report the first fluorescent probe, RBH, for imaging the heme oxygenase-1 (HO-1) activity in live cells after discovering hemin as a universal dark quencher. Hemin works via a static quenching mechanism and shows high quenching efficiency (>97 %) with fluorophores across a broad spectrum (λex=400–700 nm). The favorable properties of RBH (e.g. long excitation/emission wavelengths, fast response rate and high magnitude of signal increase) enable its use for determining HO-1 activity in complex biological samples. As HO-1 is involved in regulating antioxidant defence, iron homeostasis and gasotransmitter carbon monoxide production, we expect RBH to be a powerful tool for dissecting its functions. Also, the discovery of hemin as a general static dark quencher provides a straightforward strategy for constructing novel fluorescent probes for diverse biological species.  相似文献   

16.
利用红外光谱法、气相色谱法(GC)和色-质联用(GC-MS)技术分析测定了投运一年后的劣质变压器油中硅胶吸附物的呈色成分,分析了硅胶吸附变色的原因。  相似文献   

17.
In the present work, a highly sensitive and specific fluorescent biosensor for blood glucose monitoring is developed based on hemin-functionalized graphene quantum dots (GQDs) and glucose oxidase (GOx) system. The GQDs which are simply prepared by pyrolyzing citric acid exhibit strong fluorescence and good water-solubility. Due to the noncovalent assembly between hemin and GQDs, the addition of hemin can make hydrogen peroxide (H2O2) to destroy the passivated surface of GQDs, leading to significant fluorescence quenching of GQDs. Based on this effect, a novel fluorescent platform is proposed for the sensing of glucose. Under the optimized conditions, the linear range of glucose is from 9 to 300 μM, and the limit of detection is 0.1 μM. As unique properties of GQDs, the proposed biosensor is green, simple, cost-efficient, and it is successfully applied to the determination of glucose in human serum. In addition, the proposed method provides a new pathway to further design the biosensors based on the assembly of GQDs with hemin for detection of biomolecules.  相似文献   

18.
该文基于酶辅助靶标循环信号放大策略构建了用于黄曲霉毒素B1(AFB1)高灵敏检测的化学发光适体传感器。以G-四链体/氯化血红素DNA酶为信号分子设计了免标记的适体探针H1-S1和发夹探针H2。适体探针结合目标AFB1,在核酸外切酶I辅助下,触发靶标循环反应产生发夹H1。发夹H1与H2杂交,释放出完整的G-四链体序列,并进一步与氯化血红素结合形成G-四链体/氯化血红素DNA酶。DNA酶通过催化氧化鲁米诺-H2O2化学发光体系产生化学发光信号,实现AFB1的放大检测。在最优实验条件下,化学发光强度与AFB1质量浓度的对数在0.001~100 ng/mL范围内呈良好的线性关系,相关系数(r2)为0.9955,检出限为0.93 pg/mL,回收率为93.7%~107%。该适体传感器操作简单、灵敏度高、特异性好,在黄曲霉毒素污染检测方面具有良好的应用前景。  相似文献   

19.
Two significant G‐quadruplex aptamers named AGRO100 and T30695 are identified as multifunctional aptamers that can bind the protein ligands nucleolin or HIV‐1 integrase and hemin. Besides their strong binding to target proteins, both AGRO100 and T30695 exhibit high hemin‐binding affinities comparable to that of the known aptamer (termed PS2M) selected by the in vitro evolution process. Most importantly, their corresponding hemin–DNA complexes reveal excellent peroxidase‐like activities, higher than that of the reported hemin–PS2M DNAzyme. This enables these multifunctional aptamers to be applied to the sensitive detection of proteins, which is demonstrated by applying AGRO100 to the chemiluminescence detection of nucleolin expressed at the surface of HeLa cells. Based on the specific AGRO100–nucleolin interaction, the surface‐expressed nucleolin of HeLa cells is labeled in situ with the hemin–AGRO100 DNAzyme, and then determined in the luminol–H2O2 system. Through this approach, the sensitive detection of total nucleolin expressed at the surface of about 6000 HeLa cells is accomplished. Our results suggest that exploiting new functions of existing aptamers will help to extend their potential applications in the biochemical field.  相似文献   

20.
Recently, G-quadruplex/hemin (G4/hemin) complexes have been found to exhibit peroxidase activity, and this feature has been extensively exploited for colorimetric detection of various targets. To further understand and characterize this important DNAzyme, its substrate specificity, inactivation mechanism, and kinetics have been examined by comparison with horseradish peroxidase (HRP). G4/hemin DNAzyme exhibits broader substrate specificity and much higher inactivation rate than HRP because of the exposure of the catalytic hemin center. The inactivation of G4/hemin DNAzyme is mainly attributed to the degradation of hemin by H(2)O(2) rather than the destruction of G4. Both the inactivation rate and catalytic oxidation rate of G4/hemin DNAzyme depend on the concentration of H(2)O(2), which suggests that active intermediates formed by G4/hemin and H(2)O(2) are the branch point of catalysis and inactivation. Reducing substrates greatly inhibit the inactivation of G4/hemin DNAzyme by rapidly reacting with the active intermediates. A possible catalytic and inactivation process of G4/hemin has been proposed. These results imply a potential cause for the hemin-mediated cellular injury and provide insightful information for the future application of G4/hemin DNAzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号