首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
莫艳红  李晖  王彬  徐晓慧  刘思思  曾冬冬 《应用化学》2020,37(11):1249-1261
血红素/G-四链体DNA酶是一类具有类过氧化物酶活性的DNA分子,因其具有出色的活性、易修饰性和可编程性,被广泛应用于生物传感器等领域。 本文先是简要介绍了G-四链体的结构,再主要综述了增强血红素/G-四链体DNA酶活性的策略及基于血红素/G-四链体DNA酶的生物传感器在生物标志物、微生物与生物毒素以及金属离子检测中的应用,并展望了血红素/G-四链体DNA酶的未来发展趋势。  相似文献   

2.
该文以特殊设计的DNA序列为捕获探针,以G-四链体-血红素复合物作为信号分子,利用链式反应实现目标DNA的灵敏检测。在目标DNA存在时,捕获探针与目标DNA相互识别,同时目标DNA能与辅助探针发生连续的链式反应,从而在电极表面引入大量G-四链体结构。血红素存在下,G-四链体可与血红素结合形成具有很强电化学信号的G-四链体-血红素复合物。用差分脉冲伏安法(DPV)扫描得到的电化学信号与体系中的目标DNA浓度存在对应关系,从而实现对目标DNA的检测。在各组分浓度最适的情况下,电流响应值与目标DNA浓度在0.01~10 pmol/L内具有良好的线性关系,检出限可达8 fmol/L。该传感器灵敏度高、特异性好,具有良好的应用前景。  相似文献   

3.
基于分子发夹/荧光微球探针构建了一种侧向层析定量检测黄曲霉毒素B1(AFB1)的新方法。一条含有AFB1适配体的分子发夹与荧光微球偶联后,形成的标记探针被喷涂在试纸条的结合垫上。一条5'端含有链霉亲和素的寡核苷酸序列包被在硝酸纤维素膜的检测线上,另一条包含有AFB1适配体互补链的寡核苷酸序列包被在硝酸纤维素膜的质控线上。当待测样本中含有AFB1时,AFB1先与标记物结合垫处标记探针中的AFB1适配体结合,同时,标记探针中的DNA分子发夹‘茎’的双链被打开,AFB1与标记探针形成的复合物层析到反应膜的检测区时,被检测区的寡核苷酸序列捕获,检测区出现亮线。利用该原理,通过一个"off-on"的光信号,实现了对AFB1的高灵敏检测。实验结果表明,AFB1在0.1~50μg/L质量浓度范围内,检测线处的荧光强度(T)和质控线荧光强度(C)的比值与AFB1质量浓度呈良好的线性关系,检出限(S/N=3)达0.05μg/L,且具有很高特异性,可实现对实际样品中AFB1的准确检测。  相似文献   

4.
基于Toehold介导的链置换反应(TSDR)与DNA酶,构建了一个强特异性及低成本检测废水中SARS-CoV-2靶标RNA单碱基突变的比色生物传感器。SARS-CoV-2靶标RNA与双链DNA(dsDNA)引发TSDR,释放出完整的G-四链体序列并与氯化血红素(Hemin)结合,形成G-四链体/Hemin DNA酶,进而催化双氧水氧化3,3’,5,5’-四甲基联苯胺,使溶液呈蓝色。当SARS-CoV-2靶标RNA存在单碱基突变时,TSDR被抑制,导致裸眼观察到的溶液颜色与未突变异的靶标相比更浅。同时采用智能手机摄像头捕捉溶液的RGB值变化(ΔRGB),对裸眼观察结果的准确性进行验证。在最优条件下,构建的比色生物传感器能够特异性识别单个碱基突变的SARS-CoV-2靶标RNA,具有用于废水中SARS-CoV-2变异毒株检测的潜力。  相似文献   

5.
孔德明 《化学进展》2011,23(10):2119-2131
G-四链体-氯化血红素(hemin)DNA酶是一种由特定的核酸G-四链体与hemin结合后形成的具有过氧化物酶活性的人工模拟酶。作为一类重要的DNA酶,G-四链体-hemin DNA酶近年来在分析化学领域受到了越来越多的关注。目前这类DNA酶已被用在了多种传感器,包括金属离子传感器、适配体传感器、酶传感器、DNA传感器及药物传感器的设计当中。本文对G-四链体-hemin DNA酶在传感器设计中的应用进行了系统的介绍和评述,并对其未来的发展进行了初步的展望。  相似文献   

6.
段娜娜  王娜  杨薇  孔德明 《分析化学》2014,42(10):1414-1420
对鸟嘌呤碱基G重复序列之间连接环结构对G-四链体形成的影响进行了研究。发现在连接环较长,DNA链不易形成G-四链体的情况下,可以通过将环序列设计成双链结构的方式促进G-四链体的重新形成。这就为传感器的设计提供了一个新途径,即可以利用目标分子对环部双链的调节作用控制G-四链体DNA酶的活性。为证明这一点,在双链区域引入T-T碱基错配,破坏双链结构使DNA链不能形成G-四链体。Hg2+对T-T错配的稳定作用可以促进双链结构的形成,DNA链重新折叠成G-四链体,得到的G-四链体与氯化血红素(Hemin)结合后形成具有过氧化物酶活性的G-四链体DNA酶,据此构建了Hg2+传感器。利用此传感器可在10~700 nmol/L范围内实现Hg2+的定量检测,检出限为8.7 nmol/L。在此基础上,利用半胱氨酸可以将Hg2+从T-Hg2+-T碱基对上竞争下来的能力,设计了一种半胱氨酸的检测方法。此方法可以在20~600 nmol/L范围内实现半胱氨酸的定量检测,检出限为14 nmol/L。  相似文献   

7.
CRISPR-Cas12a是一种功能强大且可编程的分子诊断技术。本文基于CRISPR-Cas12a的附属切割活性与G-四链体/氯化血红素(Hemin)复合物,设计了一个免标记电化学生物传感器,实现对miRNA的强特异性检测。靶标miRNA-21与双链DNA探针上的Toehold区域结合并发生链置换反应,置换出双链DNA探针中较短的DNA。置换下来的DNA可以有效地激活CRISPR-Cas12a的附属切割活性。随后,具有附属切割活性的Cas12a切割电极表面上形成G-四链体/Hemin的DNA序列,导致电流信号减弱。在最优条件下,电流信号强度变化与10~100 pmol/L范围内的miRNA-21浓度呈良好的线性关系,检出限为4.2 pmol/L。该电化学生物传感器能够实现对单个碱基突变的miRNA-21或其它miRNA序列特异性识别,并可用于人血清样本(10%)中miRNA-21的检测。  相似文献   

8.
建立了CRISPR-Cas12a与便携式血糖仪耦合定量检测黄曲霉毒素B1(AFB1)的方法。体系中AFB1能够激活Cas12a的反式切割活性,激活后的Cas12a切割电极上蔗糖酶修饰的发夹探针,使得蔗糖酶游离到电极表面的溶液中。蔗糖酶催化蔗糖产生可以被血糖仪监测的响应信号,进而实现对AFB1的检测。在浓度0.001~0.1 ng/mL范围内,AFB1浓度与血糖信号呈良好的线性关系,线性方程为S=3.5+229.1c,检出限为0.3 pg/mL。该方法特异性强,适用于实际样品中AFB1的检测。  相似文献   

9.
以聚苯乙烯微球为载体,利用滚环放大技术,发展了一种以串联G-四链体-血红素DNA酶催化及T-Hg~(2+)-T特异识别为基础的"Turn-on"型Hg~(2+)高灵敏生物传感器,用于尿液样本中Hg~(2+)的高效检测。通过链霉亲和素和生物素的特异性结合,将富T生物素化Hg~(2+)捕获探针固定至微球表面,当Hg~(2+)存在时,通过形成T-Hg~(2+)-T结构将含有G-四链体互补序列的环化单链DNA序列捕获至微球表面,滚环扩增后在微球表面产生大量包含串联G-四链体的DNA序列。当氯化血红素(Hemin)插入G-四链体后,形成具有增强催化活性的G-四链体-hemin DNA酶,可催化ABTS和H_2O_2反应形成ABTS~(·+),在420 nm处具有最大吸收。考察了多种因素对检测体系的影响,在最优实验条件下,此方法对Hg~(2+)的线性检测范围为0.4~100 pmol/L,检出限为0.3pmol/L(S/N=3),回归方程为△A_(420 nm)=0.1+0.0019C_(Hg~(2+))(pmol/L)。当共存离子大量存在时,传感器对Hg~(2+)仍然具有高的选择性。应用于尿液样品中Hg~(2+)检测,加标回收率为94.0%~106.0%,相对标准偏差(RSD)为1.4%~2.6%。此方法具有良好的选择性、灵敏度及抗干扰能力,可用于复杂样品中Hg~(2+)的检测。  相似文献   

10.
徐静  孔德明 《分析化学》2012,(3):347-353
G-四链体DNA酶是由核酸G-四链体与氯化血红素(Hemin)结合后形成的一种具有过氧化物酶活性的人工酶,利用这种DNA酶,可进行多种化学及生物传感器的设计。为提高G-四链体DNA酶类Hg2+传感器的选择性,本研究在传感器的设计过程中引入了分子内裂分G-四链体,即将形成G-四链体的富G序列拆分成两部分,分别放置在Hg2+探测序列的两端。在无Hg2+存在时,部分富G序列被包埋在某一分子内二倍体结构中,无法形成G-四链体。而在Hg2+存在下,Hg2+对T-T碱基错配的稳定能力可以促使Hg2+探测序列形成分子内二倍体结构,并伴随着原有分子间二倍体结构的破坏及分子内裂分G-四链体的生成。利用生成的裂分G-四链体与Hemin作用后检测体系酶活性的提高,实现Hg2+传感器的设计。利用该传感器,可在50~500 nmol/L及2.0~7.5μmol/L两个浓度范围内实现Hg2+的定量检测,检出限为47 nmol/L。由于裂分G-四链体DNA酶的使用强化了传感器对Hg2+的依赖性,极大地提高了设计的Hg2+传感器的选择性。对实际水样的加标回收结果显示,回收率为97.5%~104.5%,证明此传感器可以满足实际水样中痕量Hg2+的分析要求。  相似文献   

11.
A homogeneous hemin/G-quadruplex DNAzyme (HGDNAzyme) based turn-on chemiluminescence aptasensor for interferon-gamma (IFN-γ) detection is developed, via dynamic in-situ assembly of luminol functionalized gold nanoparticles (lum-AuNPs), DNA, IFN-γ and hemin. The G-quadruplex oligomer of the HGDNAzyme was split into two halves, which was connected with the complementary sequence of P1 (IFN-γ-binding aptamer) to form the oligonucleotide P2. P2 hybridized with IFN-γ-binding aptamer and meanwhile assembled onto lum-AuNPs through biotin–streptavidin specific interaction. When IFN-γ was recognized by aptamer, P2 was released into the solution. The two lateral portions of P2 combined with hemin to yield the catalytic hemin/G-quadruplex DNAzyme, which amplified the luminol oxidation for a turn-on chemiluminescence signaling. Based on this strategy, the homogeneous aptasensor enables the facile detection of IFN-γ in a range of 0.5–100 nM. Moreover, the aptasensor showed high sensitivity (0.4 nM) and satisfactory specificity, pointing to great potential applications in clinical analysis.  相似文献   

12.
Zhang H  Jiang B  Xiang Y  Chai Y  Yuan R 《The Analyst》2012,137(4):1020-1023
In this work, by incorporating a specific DNAzyme sequence into a hairpin aptamer probe, we describe a label-free and sensitive method for electrochemical detection of cytokines using recombinant human IFN-γ as the model analyte. The hairpin aptamer probes are immobilized on a gold electrode through self-assembly. The presence of IFN-γ opens the hairpin structure and forms the hemin/G-quadruplex peroxidase-mimicking DNAzyme with subsequent addition of hemin. The peroxidase-mimicking DNAzyme catalyzes the electro-reduction of H(2)O(2) and amplifies the current response for IFN-γ detection, which enables the monitoring of IFN-γ at the sub-nanomolar level. The proposed sensor also shows high selectivity towards the target analyte. Our strategy thus opens new opportunities for label-free and amplified detection of different types of cytokines.  相似文献   

13.
A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3′-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs–aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1–20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules.  相似文献   

14.
In this work, a sandwich-type electrochemiluminescence (ECL) aptasensor for ultrasensitive detection of thrombin (TB) was designed based on mimicking bi-enzyme cascade catalysis to in situ generate coreactant of dissolved oxygen (O2) for signal amplification. We utilized hollow Au nanoparticles (HAuNPs) as carriers to immobilize glucose oxidase nanoparticles (GOxNPs) and Pt nanoparticles (PtNPs) by electrostatic adsorption. Then, the detection aptamer of thrombin (TBA 2) was immobilized on the PtNPs/GOxNPs/HAuNPs nanocomplexes. Finally, hemin was intercalated into the TBA 2 to obtain the hemin/G-quadruplex structure. The hemin/G-quadruplex was an interesting DNAzyme that commonly mimiced horseradish peroxidase (HRP). Herein, GOxNPs, hemin/G-quadruplex and PtNPs could form mimicking bi-enzyme cascade catalysis system to in situ generate dissolved O2 as coreactant in peroxydisulfate solution when the testing buffer contained proper amounts of glucose. This method had successfully overcome the disadvantage of difficulty to label the dissolved O2 and realized the ECL signal amplification. The experiment proved that the aptasensor had good linear relationship on low concentration of TB. The linear range was 1 × 10−6–10 nM, with a detection limit of 0.3 fM.  相似文献   

15.
《Analytical letters》2012,45(16):2439-2453
Abstract

A sensitive electrochemical biosensor was designed for determination of aflatoxin B1 (AFB1) using a copper-based metal-organic framework (Cu-MOF), which has strong electrochemical activity and exonuclease III (Exo III)-assisted recycling for dual signal amplification. Hairpin DNA (S1) was immobilized on the electrode. The AFB1 was recognized by aptamer DNA (S2) and complementary DNA (S3) was released. The S3 hybridized with the hairpin S1 to form the Exo III hydrolyzed double-stranded DNA, leaving a partial sequence of hairpin DNA (S1′) on the electrode and releasing S3 for the next cycle of the opening and digestion of hairpin S1. The amplified S1′ then was able to combine with more signal probes. Cu-MOF bond gold nanoparticles (AuNPs) by -NH2 were immobilized to capture DNA (S4) to obtain Cu-MOF/AuNPs/S4. This signal probe Cu-MOF/AuNPs/S4 was able to hybridize with the electrode and generate an amplified electrochemical signal. Under the optimized conditions, this electrochemical biosensor for AFB1 exhibited a low detection limit of 6.7?×?10?7?ng/mL at a signal-to-noise equal to 3 and a wide linear range from 10?6 to 1?ng/mL. The biosensor was also used to analyze AFB1-spiked beer sample with recovery values between 96% and 103%. This method has the potential to become a valuable technology for detecting various toxins by the selection of the appropriate aptamer DNA.  相似文献   

16.
An ultrasensitive, colorimetric and homogeneous strategy for aflatoxin B1 (AFB1) detection, which uses a DNA aptamer and two split DNAzyme halves, has been developed. Split halves of a hemin-binding DNAzymes is combined with an AFB1 aptamer to generate a homogeneous colorimetric sensor that undergoes an AFB1 induced DNA structural change. In the absence of AFB1, the split probes have peroxidase mimicking DNAzyme activity associated with catalysis of a color change reaction. Specific recognition of AFB1 by the aptamer component leads to structural deformation of the aptamer-DNAzyme complex, which causes splitting of the DNAzyme halves and a reduction in peroxidase mimicking activity. Therefore, a decrease of colorimetric signal arising from the catalytic process takes place upon in the presence of AFB1 in a concentration dependent manner in the 0.1–1.0 × 104 ng/mL range and with a colorimetric detection limit of 0.1 ng/mL. The new assay system exhibits high selectivity for AFB1 over other mycotoxins and can be employed detect the presence of AFB1 in ground corn samples. Overall, the strategy should serve as the basis for the development of rapid, simple and low-cost methods for detection of mycotoxins.  相似文献   

17.
Dye-loaded UiO-66 metal–organic framework nanoparticles (NMOFs) modified with catalytic hemin/G-quadruplex DNAzyme labels act as functional hybrid modules for the chemiluminescence resonance energy transfer (CRET) analysis of miRNAs (miRNA-155 or miRNA-21) or genes (p53 or BRCA1). The dye-loaded NMOFs (dye = fluorescein (Fl) or rhodamine 6G (Rh 6G)) are modified with hairpin probes that are engineered to include in their loop domains recognition sequences for the miRNAs or genes, and in their stem regions caged G-quadruplex domains. In the presence of the analytes miRNAs or genes, the hairpin structures are opened, leading, in the presence of hemin, to the self-assembly of hemin/G-quadruplex DNAzyme labels linked to the dye-loaded NMOFs. In the presence of luminol and H2O2, the hemin/G-quadruplex DNAzyme labels catalyze the generation of chemiluminescence that provides radiative energy to stimulate the process of CRET to the dye loaded in the NMOFs, resulting in the luminescence of the loaded dye without external excitation. The resulting CRET signals relate to the concentrations of the miRNAs or the genes and allow the sensitive analysis of miRNAs and genes. In addition, the DNA hairpin-functionalized dye-loaded NMOF sensing modules were further applied to develop amplified miRNA or gene CRET-based sensing platforms. The dye-loaded NMOFs were modified with hairpin probes that include in their loop domain the recognition sequences for miRNA-155 or miRNA-21 or the recognition sequences for the p53 or BRCA1 genes. Subjecting the hairpin-modified NMOFs to the respective miRNAs or genes, in the presence of two hairpins Hi and Hj that include in their stem regions caged G-quadruplex subunit domains, results in the analyte-triggered opening of the probe hairpin linked to the NMOFs, and the opened hairpin tethers induce the cross-opening of the hairpins Hi and Hj by the hybridization chain reaction, HCR, resulting in the assembly of G-quadruplex wires tethered to the NMOFs. The binding of hemin to the HCR-generated chains yields hemin/G-quadruplex DNAzyme wires that enhance, in the presence of luminol/H2O2, the CRET processes in the hybrid nanostructures. These amplification platforms lead to the amplified sensing of miRNAs and genes. By mixing the Fl- and Rh 6G-loaded hairpin-functionalized UiO NMOFs, the multiplexed CRET detection of miRNA-155, miRNA-21 and the p53 and BRCA1 genes is demonstrated.

Hemin/G-quadruplex DNAzyme-modified metal–organic framework nanoparticles act as functional hybrids for the catalyzed oxidation of luminol by H2O2, causing chemiluminescence and activation of chemiluminescence resonance energy transfer to the dye loads.  相似文献   

18.
Our present work aimed at developing a pseudo triple-enzyme cascade electrocatalytic electrochemical aptasensor for determination of thrombin with the amplification of alcohol dehydrogenase (ADH)-Pt–Pd nanowires bionanocomposite and hemin/G-quadruplex structure that simultaneously acted as NADH oxidase and HRP-mimicking DNAzyme. With the addition of ethanol to the electrolyte, the ADH immobilized on the Pt–Pd nanowires catalyzed ethanol to acetaldehyde accompanied by NAD+ being converted to NADH. Then the hemin/G-quadruplex firstly served as NADH oxidase, converting the produced NADH to NAD+ with the concomitant local formation of high concentration of H2O2. Subsequently, the hemin/G-quadruplex acted as HRP-mimicking DNAzyme, bioelectrocatalyzing the produced H2O2. At the same time, the Pt–Pd nanowires employed in our strategy not only provided a large surface area for immobilizing thrombin binding aptamer (TBA) and ADH, but also served as HRP-mimicking DNAzyme which rapidly bioelectrocatalyzed the reduction of the produced H2O2. Thus, such a pseudo triple-enzyme cascade electrochemical aptasensor could greatly promote the electron transfer of hemin and resulted in the dramatic enhancement of electrochemical signal. As a result, a wide dynamic concentration linear range from 0.2 pM to 20 nM with a low detection limit of 0.067 pM for thrombin (TB) determination was obtained. The excellent performance indicated that our strategy was a promising way for ultrasensitive assays in electrochemical aptasensors.  相似文献   

19.
G-quadruplex containing peroxidase DNAzyme is a complex of hemin and a single-stranded guanine-rich DNA (hemin-binding DNA aptamer), which is used as an attractive catalytic label for biosensing recently. Therein, the hemin-binding DNA aptamer contains four GGG repeats and can fold into a G-quadruplex structure. In this paper, we have developed a new split mode to divide the hemin-binding DNA aptamer into two parts: one possesses three GGG repeats, and another part possesses one GGG repeat, namely, the 3:1 split mode. The combination of G-quadruplex and hemin binding could be used as a sensitive probe for the identification of single nucleotide polymorphisms by giving a color signal, visible to the naked eye at room temperature. The G-quadruplex containing peroxidase DNAzyme utilizes the 3:1 split mode and can be directly used for the identification of SNPs with a detection limit in the nM range when the matching length of the probe is short enough. When the matching length of the probe is relatively long, another method adding competition sequences to the probe could also operate effectively for the identification of SNPs. The results also suggested that we could detect the signal when the mutation sample was only 5% in the total target DNA with a competition strategy.  相似文献   

20.
In this work, a new signal amplified strategy was constructed based on isothermal exponential amplification reaction (EXPAR) and hybridization chain reaction (HCR) generating the hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme (HRP-mimicking DNAzyme) nanowires as signal output component for the sensitive detection of thrombin (TB). We employed EXPAR’s ultra-high amplification efficiency to produce a large amount of two hairpin helper DNAs within a minutes. And then the resultant two hairpin helper DNAs could autonomously assemble the hemin/G-quadruplex HRP-mimicking DNAzymes nanowires as the redox-active reporter units on the electrode surface via hybridization chain reaction (HCR). The hemin/G-quadruplex structures simultaneously served as electron transfer medium and electrocatalyst to amplify the signal in the presence of H2O2. Specifically, only when the EXPAR reaction process has occurred, the HCR could be achieved and the hemin/G-quadruplex complexes could be formed on the surface of an electrode to give a detectable signal. The proposed strategy combines the amplification power of the EXPAR, HCR, and the inherent high sensitivity of the electrochemical detection. With such design, the proposed assay showed a good linear relationship within the range of 0.1 pM–50 nM with a detection limit of 33 fM (defined as S/N = 3) for TB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号