首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
1INTRODUCTION Streptococcus pneumoniae is a key pathogen in many respiratory tract infections.In a Canada-wide surveillance study published in1999,it was reported that21.2%of pneumococcal tested were interme-diately susceptible or resistant to penicillin.As the newer respiratory fluoroquinolones are active aga-inst both penicillin-susceptible and penicillin-resis-tant isolates of S.pneumoniae,they will be increa-singly important in the future treatment of infections caused by this pathoge…  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The chemical shift tensors of the acetate anions in cadmium acetate dihydrate are calculated using a cluster approach, the embedded ion method (EIM), and a combination of the two in the EIM/cluster method. The results of these calculations are compared with those completed on the isolated acetate anion and show the need for the inclusion of intermolecular interactions. The RMS difference between experiment and theory improves from over 60 ppm when the calculation is completed on an isolated anion, to below 10 ppm when interactions to nearby atoms are included. The best cluster model includes three cadmium acetate dihydrate and gives an RMS result of 4.4 ppm. The EIM method, which uses point charges to account for the intermolecular effects, achieves an RMS of 7.7 ppm on individual anions alone. A combination of the two, the EIM/cluster method, shows that the only necessary atom to explicitly add is the nearest cadmium; this addition results in an RMS of 4.1 ppm. These results are also discussed in terms of the computational cost of the different calculations.  相似文献   

19.
20.
The (13)C and (15)N chemical shift tensor principal values for adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine are measured on natural abundance samples. Additionally, the (13)C and (15)N chemical shielding tensor principal values in these four nucleosides are calculated utilizing various theoretical approaches. Embedded ion method (EIM) calculations improve significantly the precision with which the experimental principal values are reproduced over calculations on the corresponding isolated molecules with proton-optimized geometries. The (13)C and (15)N chemical shift tensor orientations are reliably assigned in the molecular frames of the nucleosides based upon chemical shielding tensor calculations employing the EIM. The differences between principal values obtained in EIM calculations and in calculations on isolated molecules with proton positions optimized inside a point charge array are used to estimate the contributions to chemical shielding arising from intermolecular interactions. Moreover, the (13)C and (15)N chemical shift tensor orientations and principal values correlate with the molecular structure and the crystallographic environment for the nucleosides and agree with data obtained previously for related compounds. The effects of variations in certain EIM parameters on the accuracy of the shielding tensor calculations are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号