首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
An acyclic edge coloring of a graph G is a proper edge coloring such that there are no bichromatic cycles in G.The acyclic chromatic index χ’α(G) of G is the smallest k such that G has an acyclic edge coloring using k colors.It was conjectured that every simple graph G with maximum degree Δ has χ’α(G) ≤Δ+2.A1-planar graph is a graph that can be drawn in the plane so that each edge is crossed by at most one other edge.In this paper,we show that every 1-planar graph G without 4-cycles h...  相似文献   

2.
A graph is outer-1-planar if it can be drawn in the plane so that all vertices lie on the outer-face and each edge crosses at most one another edge.It is known that every outer-1-planar graph is a planar partial3-tree.In this paper,we conjecture that every planar graph G has a proper incidence(Δ(G)+2)-coloring and confirm it for outer-1-planar graphs with maximum degree at least 8 or with girth at least 4.Specifically,we prove that every outer-1-planar graph G has an incidence(Δ(G)+3,2)-coloring...  相似文献   

3.
A proper edge coloring of a graph G is acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G, denoted by χ a(G), is the least number of colors such that G has an acyclic edge coloring. A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that χ a(G) ≤Δ(G) + 22, if G is a triangle-free 1-planar graph.  相似文献   

4.
A graph is 1-planar if it can be drawn on a plane so that each edge is crossed by at most one other edge. A plane graph with near independent crossings (say NIC-planar graph) is a 1-planar graph with the restriction that for any two crossings the four crossed edges are incident with at most one common vertex. The full characterization of NIC-planar complete and complete multipartite graphs is given in this paper.  相似文献   

5.
A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. In this paper, it is shown that each 1-planar graph with minimum degree 7 contains a copy of K2∨(K1∪K2) with all vertices of degree at most 12. In addition, we also prove the existence of a graph K1∨(K1∪K2 ) with relatively small degree vertices in 1-planar graphs with minimum degree at least 6.  相似文献   

6.
A graph is 1-planar if it can be drawn on the Euclidean plane so that each edge is crossed by at most one other edge. A proper vertex k-coloring of a graph G is defined as a vertex coloring from a set of k colors such that no two adjacent vertices have the same color. A graph that can be assigned a proper k-coloring is k-colorable. A cycle is a path of edges and vertices wherein a vertex is reachable from itself. A cycle contains k vertices and k edges is a k-cycle. In this paper, it is proved t...  相似文献   

7.
A graph is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once.In this paper,we study 1-planar graph joins.We prove that the join G + H is 1-planar if and only if the pair [G,H] is subgraph-majorized by one of pairs [C3 ∪ C3,C3],[C4,C4],[C4,C3],[K2,1,1,P3] in the case when both elements of the graph join have at least three vertices.If one element has at most two vertices,then we give several necessary/sufficient conditions for the bigger element.  相似文献   

8.
The linear 2-arboricity la_2(G) of a graph G is the least integer k such that G can be partitioned into k edge-disjoint forests,whose component trees are paths of length at most 2.In this paper,we prove that if G is a 1-planar graph with maximum degree Δ,then la_2(G)≤[(Δ+1)/2]+7.This improves a known result of Liu et al.(2019) that every 1-planar graph G has la_2(G)≤[(Δ+1)/2]+14.We also observe that there exists a 7-regular 1-planar graph G such that la_2(G)=6=[(Δ+1)/2]+2,which implies that our solution is within 6 from optimal.  相似文献   

9.
Dong  Wei  Li  Rui  Xu  Bao Gang 《数学学报(英文版)》2019,35(4):577-582
A strong edge coloring of a graph is a proper edge coloring where the edges at distance at most 2 receive distinct colors. The strong chromatic index χ'_s(G) of a graph G is the minimum number of colors used in a strong edge coloring of G. In an ordering Q of the vertices of G, the back degree of a vertex x of G in Q is the number of vertices adjacent to x, each of which has smaller index than x in Q. Let G be a graph of maximum degree Δ and maximum average degree at most 2 k. Yang and Zhu [J. Graph Theory, 83, 334–339(2016)] presented an algorithm that produces an ordering of the edges of G in which each edge has back degree at most 4 kΔ-2 k in the square of the line graph of G, implying that χ'_s(G) ≤ 4 kΔ-2 k + 1. In this note, we improve the algorithm of Yang and Zhu by introducing a new procedure dealing with local structures. Our algorithm generates an ordering of the edges of G in which each edge has back degree at most(4 k-1)Δ-2 k in the square of the line graph of G, implying that χ'_s(G) ≤(4 k-1)Δ-2 k + 1.  相似文献   

10.
An acyclic edge coloring of a graph is a proper edge coloring such that every cycle contains edges of at least three distinct colors.The acyclic chromatic index of a graph G,denoted by a′(G),is the minimum number k such that there is an acyclic edge coloring using k colors.It is known that a′(G)≤16△for every graph G where △denotes the maximum degree of G.We prove that a′(G)13.8△for an arbitrary graph G.We also reduce the upper bounds of a′(G)to 9.8△and 9△with girth 5 and 7,respectively.  相似文献   

11.
A class of antimagic join graphs   总被引:1,自引:0,他引:1  
A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2, . . . , |E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f which is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than K 2 is antimagic. In this paper, we show that if G 1 is an n-vertex graph with minimum degree at least r, and G 2 is an m-vertex graph with maximum degree at most 2r-1 (m ≥ n), then G1 ∨ G2 is antimagic.  相似文献   

12.
Bound on <Emphasis Type="Italic">m</Emphasis>-restricted Edge Connectivity   总被引:3,自引:0,他引:3  
An m-restricted edge cut is an edge cut that separates a connected graph into a disconnected one with no components having order less than m. m-restrict edge connectivity λm is the cardinality of a minimum m-restricted edge cut. Let G be a connected k-regular graph of order at least 2m that contains m-restricted edge cuts and X be a subgraph of G. Let θ(X) denote the number of edges with one end in X and the other not in X and ξm=min{θ(X) ;X is a connected vertex-induced subgraph of order m}.It is proved in this paper that if G has girth at least m/2 2,then λm≤ξm.The upper bound of λm is sharp.  相似文献   

13.
Restricted Edge Connectivity of Binary Undirected Kautz Graphs   总被引:2,自引:0,他引:2  
A restricted edge cut is an edge cut of a connected graph whose removal resultsin a disconnected graph without isolated vertices. The size of a minimum restricted edge cutof a graph G is called its restricted edge connectivity, and is denoted by λ′(G). Let ξ(G) bethe minimum edge degree of graph G. It is known that λ′(G) ≤ξ(G) if G contains restrictededge cuts. Graph G is called maximal restricted edge connected if the equality holds in thethe preceding inequality. In this paper, undirected Kautz graph UK(2, n) is proved to bemaximal restricted edge connected if n ≥ 2.  相似文献   

14.
An acyclic edge coloring of a graph G is a proper edge coloring such that there are no bichromatic cycles.The acyclic edge chromatic number of a graph G is the minimum number k such that there exists an acyclic edge coloring using k colors and is denoted by χ’ a(G).In this paper we prove that χ ’ a(G) ≤(G) + 5 for planar graphs G without adjacent triangles.  相似文献   

15.
An adjacent vertex distinguishing edge-colorings of a graph G is a proper edge coloring of G such that any pair of adjacent vertices have distinct sets of colors. The minimum number of color required for an adjacent vertex distinguishing edge-coloring of G is denoted by χa'(G). In this paper, we prove that if G is a planar graph with girth at least 5 and without isolated edges, then χa'(G)≤ max{8,Δ(G)+1}. © 2022, Chinese Academy of Sciences. All right reserved.  相似文献   

16.
A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e. The sum of the weights of the edges incident with a vertex v is called the weighted degree of v, denoted by dw(v). The weight of a cycle is defined as the sum of the weights of its edges. Fujisawa proved that if G is a 2-connected triangle-free weighted graph such that the minimum weighted degree of G is at least d, then G contains a cycle of weight at least 2d. In this paper, we proved that if G is a2-connected triangle-free weighted graph of even size such that dw(u) + dw(v) ≥ 2d holds for any pair of nonadjacent vertices u, v ∈ V(G), then G contains a cycle of weight at least 2d.  相似文献   

17.
Let G be a k-connected graph, and T be a subset of V(G)If G- T is not connected,then T is said to be a cut-set of GA k-cut-set T of G is a cut-set of G with |T | = kLet T be a k-cut-set of a k-connected graph GIf G- T can be partitioned into subgraphs G1 and G2 such that |G1| ≥ 2, |G2| ≥ 2, then we call T a nontrivial k-cut-set of GSuppose that G is a(k- 1)-connected graph without nontrivial(k- 1)-cut-setThen we call G a quasi k-connected graphIn this paper, we prove that for any integer k ≥ 5, if G is a k-connected graph without K-4, then every vertex of G is incident with an edge whose contraction yields a quasi k-connected graph, and so there are at least|V(G)|2edges of G such that the contraction of every member of them results in a quasi k-connected graph.  相似文献   

18.
THEORETICAL RESULTS ON AT MOST 1-BEND EMBEDDABILITY OF GRAPHS   总被引:1,自引:0,他引:1  
1. Introduction Let κ be a non-negative integer. A κ-bend graph is a plane graph in which every edgeis a broken line consisting of at most κ+ 1 horizontal or vertical segments. A bend is any point which is the intersection of a horizontal segment and a verticalsegment of an edge. A planar graph G is κ-rectilinear if it admits a plane embedding Gwhich is a κ-bend graph. In this case G is said to be a κ-embedding of G.  相似文献   

19.
A graph is 1-toroidal, if it can be embedded in the torus so that each edge is crossed by at most one other edge. In this paper, it is proved that every 1-toroidal graph with maximum degree Δ≥ 10 is of class one in terms of edge coloring. Meanwhile, we show that there exist class two 1-toroidal graphs with maximum degree Δ for each Δ≤ 8.  相似文献   

20.
A graph is IC-planar if it admits a drawing in the plane such that each edge is crossed at most once and two crossed edges share no common end-vertex.A proper total-k-coloring of G is called neighbor sum distinguishing if∑_c(u)≠∑_c(v)for each edge uv∈E(G),where∑_c(v)denote the sum of the color of a vertex v and the colors of edges incident with v.The least number k needed for such a total coloring of G,denoted byχ∑"is the neighbor sum distinguishing total chromatic number.Pilsniak and Wozniak conjecturedχ∑"(G)≤Δ(G)+3 for any simple graph with maximum degreeΔ(G).By using the famous Combinatorial Nullstellensatz,we prove that above conjecture holds for any triangle free IC-planar graph with△(G)≥7.Moreover,it holds for any triangle free planar graph withΔ(G)≥6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号