首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quartz crystal microbalance (QCM) has been used to determine total-mass sputtering yields of PMMA films by 1-16 keV C60+,2+ ion beams. Quantitative sputtering yields for PMMA are presented as mass loss per incident ion Ym. Mass-lost rate QCM data show that a 13 keV C60 cluster leads to emission equivalent to 800 PMMA molecules per ion. The power law obtained for the increase in sputtering yield with primary ion energy is in good agreement those predicted by “thermal spike” regime and MD models, when crater sizes are used to estimate sputtering.  相似文献   

2.
Ion beam sputter deposition (IBSD) is an established physical vapour deposition technique that offers the opportunity to tailor the properties of film-forming particles and, consequently, film properties. This is because of two reasons: (i) ion generation and acceleration (ion source), sputtering (target) and film deposition (substrate) are locally separated. (ii) The angular and energy distribution of sputtered target atoms and scattered primary particles depend on ion incidence angle, ion energy, and ion species. Ion beam sputtering of a Si target in a reactive oxygen atmosphere was used to grow SiO2 films on silicon substrates. The sputtering geometry, ion energy and ion species were varied systematically and their influence on film properties was investigated. The SiO2 films are amorphous. The growth rate increases with increasing ion energy and ion incidence angle. Thickness, index of refraction, stoichiometry, mass density and surface roughness show a strong correlation with the sputtering geometry. A considerable amount of primary inert gas particles is found in the deposited films. The primary ion species also has an impact on the film properties, whereas the influence of the ion energy is rather small.  相似文献   

3.
Thin titanium nitride films (50–110 nm) deposited via magnetron sputtering on Al+3 wt.% Mg substrates were irradiated with Ar, Kr, and Xe ion beams at room temperature and with energies between 0.1–0.9 MeV. Sputtering yields and interface mixing rates were determined using Rutherford backscattering (RBS) as depth profiling method. The obtained TiN sputtering yields for Ar and Xe irradiation are found to be in good agreement with predictions of the Sigmund approach. A systematic study with Ar and Xe beams revealed a correlation of the mixing rate with the parameter d/R p, where d denotes the layer thickness and R p the mean projected ion range. The mixing data and Monte-Carlo calculations of the collision cascades elucidate the importance of focused recoil transport, especially in the case of Xe irradiations. The results from ion mixing experiments of titanium films (70–140 nm) on Al-3% Mg with 0.1–1.0 MeV Xe beams and 0.05–0.2 MeV Ar beams support these conclusions.  相似文献   

4.
TiO2 thin films were grown by ion beam sputter deposition (IBSD) using oxygen ions, with the ion energy and geometrical parameters (ion incidence angle, polar emission angle, and scattering angle) being varied systematically. Metallic Ti and ceramic TiO2 served as target materials. The thin films were characterized concerning thickness, growth rate, surface topography, structural properties, mass density, and optical properties. It was found that the scattering geometry has the main impact on the film properties. Target material, ion energy, and ion incidence angle have only a marginal influence. Former studies on reactive IBSD of TiO2 using Ar and Xe ions reported equivalent patterns. Nevertheless, the respective ion species distinctively affects the film properties. For instance, mass density and the refractive index of the TiO2 thin films are remarkably lower for sputtering with oxygen ions than for sputtering with Ar or Xe ions. The variations in the thin film properties are tentatively attributed to the angular and the energy distribution of the film-forming particles, especially, to those of the backscattered primary particles.  相似文献   

5.
Zn1−xNixO (x = 0.02, 0.03, 0.04, 0.05, 0.07) films were prepared using magnetron sputtering. X-ray diffraction indicates that all samples have a wurtzite structure with c-axis orientation. X-ray photoelectron spectroscopy results reveal that the Ni ion is in a +2 charge state in these films. Magnetization measurements indicate that all samples have room temperature ferromagnetism. In order to elucidate the origin of the ferromagnetism, Zn0.97Ni0.03O films were grown under different atmospheric ratios of argon to oxygen. The results show that as the fraction of oxygen in the atmosphere decreases, both the saturation magnetization and the number of oxygen vacancies increase, confirming that the ferromagnetism is correlated with the oxygen vacancy level.  相似文献   

6.
Molybdenum oxide (Mo1–xOx) films were prepared by reactive rf sputtering of a Mo target in O2/Ar plasma. The dependence of film properties on various sputtering parameters is investigated. The atomic percentage of oxygen (x) in the Mo1–xOx films decreases with sputtering power and increases with the partial pressure of oxygen. Mo1–xOx films that exhibit metallic conductivities can be obtained over a wide range of sputtering conditions. The intrinsic film stress of conducting Mo1–xOx is compressive. Such M1–xOx films were shown by backscattering spectrometry to be excellent diffusion barriers between Al and Si up to 600 °C annealing for 30 min.  相似文献   

7.
Metal cluster complexes are chemically synthesized organometallic compounds, which have a wide range of chemical compositions with high molecular weight. Using a metal cluster complex ion source, sputtering characteristics of silicon bombarded with normally incident Ir4(CO)7+ ions were investigated. Experimental results showed that the sputtering yield at 10 keV was 36, which is higher than that with Ar+ ions by a factor of 24. In addition, secondary ion mass spectrometry (SIMS) of boron-delta-doped silicon samples and organic films of poly(methyl methacrylate) (PMMA) was performed. Compared with conventional O2+ ion beams, Ir4(CO)7+ ion beams improved depth resolution by a factor of 2.5 at the same irradiation conditions; the highest depth resolution of 0.9 nm was obtained at 5 keV, 45° with oxygen flooding of 1.3 × 10−4 Pa. Furthermore, it was confirmed that Ir4(CO)7+ ion beams significantly enhanced secondary ion intensity in high-mass region.  相似文献   

8.
The effect of substrate material on the electrical characteristics of Ta x O y films produced by high-frequency magnetron sputtering of a tantalum oxide target is studied. The effect of oxygen plasma on leakage currents, dielectric permittivity, and dielectric dissipation factor of thin (300–400 nm) Ta x O y layers is found. It is proposed to process tantalum oxide films in oxygen plasma to control their electrical and dielectric properties.  相似文献   

9.
氧空位对钴掺杂氧化锌半导体磁性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
陈静  金国钧  马余强 《物理学报》2009,58(4):2707-2712
从实验和理论上阐述了氧空位对Co掺杂ZnO半导体磁性能的影响.采用磁控溅射法在不同的氧分压下制备了Zn095Co005O薄膜,研究了氧分压对薄膜磁性能的影响.实验结果表明,高真空条件下制备的Zn095Co005O薄膜具有室温铁磁性,提高氧分压后制备的薄膜铁磁性逐渐消失.第一性原理计算表明,在Co掺杂ZnO体系中引入氧空位有利于降低铁磁态的能量,铁磁态的稳定性与氧空位和Co之间的距离密切相关. 关键词: Co掺杂ZnO 稀磁半导体 第一性原理计算 氧空位缺陷  相似文献   

10.
A comparative study has been carried on the role of balanced magnetron (BM) and unbalanced magnetron (UBM) sputtering processes on the properties of SnO2 thin films. The oxygen partial pressure, substrate temperature and deposition pressure were kept 20%, 700 °C and 30 mTorr, respectively and the applied RF power varied in the range of 150–250 W. It is observed that the UBM deposition causes significant effect on the structural, electrical and optical properties of SnO2 thin films than BM as evidenced by X-ray diffraction, C-V, Spectroscopic Ellipsometer and Photoluminescence measurements. The value of band gap (Eg) of the films deposited at 150 W in UBM is found as Eg = 3.83 eV which is much higher than the value of Eg = 3.69 eV as observed in BM sputtering indicating that UBM sputtering results in good crystalline quality. Further, the C-V measurements of SnO2 thin films deposited using UBM at high power 250 W show hysteresis with large flat band shift indicating that these thin films can be used for the fabrication of memory device. The observed results have been attributed to different mechanisms which exist simultaneously under unbalanced magnetron sputtering due to ion bombardment of growing SnO2 thin film by energetic Ar+ ions.  相似文献   

11.
Combined SIMS,AES, and XPS investigations of tantalum oxide layers   总被引:4,自引:0,他引:4  
Thick layers of tantalum oxide prepared by thermal and anodic oxidation have been studied by combined SIMS, AES, and XPS during depth profiling by 3keV Ar+ ion sputtering. The chemical composition of these films is revealed by the OKLL and O 1s signals and by the “lattice valence” parameter determined from the TaO n ± intensities. Thus the anodic film consists of a contamination layer, an oxygen-rich reactive interface and a thick homogeneous oxide layer followed by an interface to the Ta metal. The thermal oxide shows an oxygen concentration decreasing with depth and a broad oxide-metal interface. In both cases, carbon contamination (carbide) prevents the application of the valence model to the clean Ta substrate. The sputtering yield of the oxides was found to be 0.6 Ta2O5/ion.  相似文献   

12.
Reactive direct current magnetron sputtering and in situ thermal oxidation were used to prepare vanadium oxide (VO X ) thin films with different oxygen contents. X-ray diffraction, Fourier transform infrared spectroscopy and a field emission scanning electron microscope were employed to characterize the films. The optical properties of the VO X films at room temperature and 90 °C were investigated by applying an spectroscopic ellipsometer with a three-layer model of BEMA/Brendel–Bormann oscillator/substrate. It was demonstrated that the vanadium–oxygen bonds were strengthened, the film thickness and roughness decreased, while the grain size increased with increasing oxygen content. The increase in oxygen content had the effect of decreasing the near-infrared reflectance and free-electron concentration of the film at 90°C due to the decrease in the amount of VO2.  相似文献   

13.
HfO2 films prepared on glass substrates by dc reactive magnetron sputtering in an Ar + O2 atmosphere are investigated. The films are polycrystallized with a pure monoclinic phase, and the crystallization strongly relates to the technology environment. Charged particle bombardment mainly caused by negative oxygen ions during sputtering on the films results in rougher surface morphology and worse crystalline property. Influence of sputtering pressure, substrate temperature and Ar:O2 flow ratio is studied. The main orientations of the films are (−1 1 1) and (1 1 1). The (−1 1 1) orientation is stable, but (1 1 1) orientation is very sensitive to the sputtering condition, and it can be suppressed effectively by introducing charged particle bombardment, lowing sputtering pressure and increasing oxygen concentration.  相似文献   

14.
Al-doped zinc oxide (AZO) films are prepared on quartz substrates by dual-ion-beam sputtering deposition at room temperature (∼25°C). An assisting argon ion beam (ion energy E i =0–300 eV) directly bombards the substrate surface to modify the properties of AZO films. The effects of assisted-ion beam energy on the characteristics of AZO films were investigated in terms of X-ray diffraction, atomic force microscopy, Raman spectra, Hall measurement and optical transmittance. With increasing assisting-ion beam bombardment, AZO films have a strong improved crystalline quality and increased radiation damage such as oxygen vacancies and zinc interstitials. The lowest resistivity of 4.9×10−3Ω cm and highest transmittance of above 85% in the visible region were obtained under the assisting-ion beam energy 200 eV. It was found that the bandgap of AZO films increased from 3.37 to 3.59 eV when the assisting-ion beam energy increased from 0 to 300 eV.  相似文献   

15.
Soft magnetic nanocrystalline thin films with a high content of Ta (10 wt %) are synthesized by the method of reactive RF magnetron sputtering with subsequent annealing. It is established that the microstructure and magnetic properties of the films depend on the nitrogen partial pressure during sputtering and on the annealing temperature. Annealing of the amorphous films leads to the formation of α-Fe nanocrystallites whose properties and interactions determine the film parameters. A decrease in the α-Fe grain size to a level below the length of ferromagnetic exchange interaction sharply increases the magnetic softness. The role of nitrogen ions in the formation of a α-Fe nanocrystallite structure and uniaxial magnetic anisotropy of Fe-Ta-N films is established. The optimum technological regimes of deposition and annealing of the Fe-Ta-N films are determined, which ensure the synthesis of Fe-Ta-N nanocrystalline thin films with a high magnetic softness (B s=1.6 T, H c=0.2 Oe, and μ1(1 MHz)=3400).  相似文献   

16.
离子束溅射制备Nb2O5光学薄膜的特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
袁文佳  章岳光  沈伟东  马群  刘旭 《物理学报》2011,60(4):47803-047803
研究了离子束溅射(IBS)制备的Nb2O5薄膜的光学特性、应力、薄膜微结构等特性,系统地分析了辅助离子源的离子束能量和离子束流对薄膜特性的影响.结果显示,在辅助离子源不同参数情况下,折射率在波长550 nm处为2.310—2.276,应力值为-281—-152 MPa.在合适的工艺参数下,消光系数可小于10-4,薄膜具有很好的表面平整度.与用离子辅助沉积(IAD)制备的薄膜相比,IBS制备的薄膜具有更好的光学特性和薄膜微结构. 关键词: 2O5薄膜')" href="#">Nb2O5薄膜 离子束溅射 光学特性 应力  相似文献   

17.
Thermal wave characterization of thin films used in industrial applications can be a useful tool, not just to get information on the films' thermal properties, but to get information on structural-physical parameters, e.g. crystalline structure and surface roughness, and on the film deposition conditions, since the thermal film properties are directly related to the structural-physical parameters and to the deposition conditions. Different sets of TiCXOY thin films, deposited by reactive magnetron sputtering on steel, have been prepared, changing only one deposition parameter at a time. Here, the effect of the oxygen flow on the thermal film properties is studied. The thermal waves have been measured by modulated IR radiometry, and the phase lag data have been interpreted using an Extremum method by which the thermal coating parameters are directly related to the values and modulation frequencies of the relative extrema of the inverse calibrated thermal wave phases. Structural/morphological characterization has been done using X-ray diffraction (XRD) and atomic force microscopy (AFM). The characterization of the films also includes thickness, hardness, and electric resistivity measurements. The results obtained so far indicate strong correlations between the thermal diffusivity and conductivity, on the one hand, and the oxygen flow on the other hand.  相似文献   

18.
This paper reports on d.c. sputtering of copper films using a cylindrical magnetron (CyM) with the discharge enhanced and/or ignited by a microwave plasma produced in an external magnetic fieldB e . The sputtering system was optimized with the aim to achieve high deposition rate of films at low argon pressures. It was achieved by enhancing the ionization degree of the discharge plasma by microwaves absorbed in the plasma and by the control of the distribution ofB e (z) along the device axis, i.e. by controlling the transport of the plasma to within a close vicinity of the sputtered target of the CyM. The optimized sputtering system can sputter films at low argon pressures from about 0.1 Pa down to 0.005 Pa and at quite large discharge currentsI d up to 1 A, i.e. at quite large deposition ratesa D of about several hunderds of nanometers per minute. The sputtering system operates at pressures lower than conventional magnetrons, i.e., under conditions when fast neutrals play a significant role. It opens the possibility to produce films of new properties. As an example, the microwave enhanced sputtering discharge was used to deposit Cu films. Resistivity and preferred crystal orientation of Cu films prepared under different argon pressures and at microwave powers ranging from about 100 W to 800 W is reported.This work was supported in part by the Grant Agency of Czech Republic under Grant No. 202/93/0508.  相似文献   

19.
李跃甫  叶辉  傅兴海 《物理学报》2008,57(2):1229-1235
采用溶胶-凝胶法在(100)Si单晶上预先制备出掺钾(K)的铌酸锶钡(SBN)缓冲层,利用射频磁控溅射法在缓冲层KSBN上沉积出高择优取向的铌酸锶钡薄膜,获得了磁控溅射法制备择优取向铌酸锶钡薄膜的相关工艺参数,研究发现,KSBN缓冲层能够很有效地克服衬底与SBN薄膜之间较大的晶格失配,在氧气氩气的比例为1∶2,工作气压为10 Pa,溅射功率300 W,衬底温度300℃,退火温度为800℃的工艺条件下,能够获得c轴高度择优取向的铌酸锶钡铁电薄膜.利用X射线衍射仪,原子力显微镜等仪器分析了薄膜 关键词: 磁控溅射 高择优取向 p-n结效应  相似文献   

20.
Energetic particles are used for inducing chemical reactions as well as for modifying the properties of materials with regard to their bulk and surface chemical behavior. The effects are partly caused by radiation damage or phase intermixing, partly by the chemical properties of the individual bombarding particles. In this contribution a survey of relevant applications of these techniques is presented:

1) Chemical reactions of implanted and recoil atoms and their use for syntheses, doping and labeling of compounds.

2) The formation of thin films by decomposing chemical compounds with ion beams.

3) Catalytic effects on substrates treated by sputtering or ion implantation. Recent results with nonmetallic substrates are reviewed. Mainly hydrogenation reactions at a solid/gas interface or redox reactions at an electrified solid/liquid interface are mentioned.

The present status and future prospects of these kinds of investigations will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号