首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Eu3+ doped NaGdF4 (NaGdF4:Eu3+) nanocrystals in hexagonal crystal phase were prepared by a polyol method, and the size and morphology controllable NaGdF4:Eu3+/PVP nano-composite fibers were obtained through the electrospinning technique, and then the NaGdF4:Eu3+ nanowires were obtained by followed annealing. By changing the ratio of PVP to NaGdF4 as well as the calcination temperature, the optimal conditions for synthesizing the NaGdF4 nanowires were obtained, and the structural properties of the synthesized sample were characterized by powder X-ray diffraction (XRD) patterns and field emission scanning electron micrographs (SEM) images. The luminescent properties of the NaGdF4:Eu3+ nanocrystals and nanowires were also studied in this paper. We observed that the luminescent intensity of NaGdF4:Eu3+ nanowires was greatly increased compared to the annealed NaGdF4:Eu3+ nanocrystals at the same temperature.  相似文献   

2.
采用液相法成功制备了MWCNTs负载NaGdF4:Tb3+,Eu3+纳米粒子的磁光热多功能复合纳米材料,并用XRD,SEM和EDS对其结构、组成和形貌进行了表征,结果表明:NaGdF4:Tb3+,Eu3+纳米粒子为六方晶相,形貌为球形且尺寸分布均匀,直径大约为25 nm,并且均匀的包覆在MWCNTs的表面;通过PL,VSM和HTC对复合纳米材料的发光性能,磁性能和光热转换性能进行了表征,采用MTT法对多功能复合纳米材料的生物相容性进行了评估,结果表明:MWCNTs-NaGdF4:Tb3+,Eu3+复合纳米材料具有良好的多色发光性能、磁性能、光热转换性能、低的毒性和良好的生物相容性。该种磁光热多功能复合纳米材料在生物标记、生物成像、肿瘤诊疗等领域有着广泛的应用前景。  相似文献   

3.
Efficient upconversion (UC)–downshifting (DS), dual-mode-emitting NaGdF4:Yb,Tm/NaGdF4:Tb/NaYF4 core/shell/shell (C/S/S) nanophosphors (NPs) were synthesized. The UC luminescence color changed from blue to sky blue after doping Tb3+ into NaGdF4 shell because Tb3+ emission peaks via 5D4 → 7FJ transition were observed with Tm3+ emission peaks via 1D2 → 3F4 and 1G4 → 3H6 transitions through the energy migration UC process of Yb3+ → Tm3+ → Gd3+ → Tb3+. Upon increasing the Tb3+ concentration in the NaGdF4 shell from 5 to 15%, the Commission Internationale de l’Éclairage (CIE) color coordinates changed from (0.2188, 0.2390) to (0.2616, 0.3654). When NaGdF4:Yb(49%),Tm(1%)/NaGdF4:Tb(15%)/NaYF4 NPs were excited using 273 nm ultraviolet light, the C/S/S NPs exhibited bright green light with CIE color coordinates of (0.3354, 0.5090) as a result of energy transfer from Gd3+ to Tb3+. These bright UC–DS, dual-mode-emitting C/S/S NPs could be applied in various applications, including multiplexed imaging and anticounterfeiting.  相似文献   

4.
Monodisperse water‐soluble hexagonal phase Ln3+‐doped NaGdF4 upconverting nanocrystals (UCNCs) have been successfully fabricated by means of a fast, facile, and environmentally friendly microwave‐assisted route with polyethylenimine as the surfactant. Fine‐tuning of the UC emission from visible to near‐IR and finally to white light has been achieved. Furthermore, studies of the magnetic resonance imaging as well as the magnetization (magnetization–magnetic field curves) and the targeted recognition properties of FA‐coupled amine‐functionalized NaGdF4@SiO2 UCNCs indicate that the obtained NaGdF4 UCNCs can be potential candidates for dual‐mode optical/magnetic bioapplications.  相似文献   

5.
Color‐tunable luminescence has been extensively investigated in upconverting nanoparticles for diverse applications, each exploiting emissions in different spectral regions. Manipulation of the emission wavelength is accomplished by varying the composition of the luminescent material or the characteristics of the excitation source. Herein, we propose core–shell β‐NaGdF4: Tm3+, Yb3+/β‐NaGdF4: Tb3+ nanoparticles as intrinsic time‐tunable luminescent materials. The time dependency of the emission wavelength only depends on the different decay time of the two emitters, without additional variation of the dopant concentration or pumping source. The time‐tunable emission was recorded with a commercially available camera. The dynamics of the emissions is thoroughly investigated, and we established that the energy transfer from the 1D2 excited state of Tm3+ ions to the higher energy excited states of Tb3+ ions to be the principal mechanism to the population of the 5D4 level for the Tb3+ ions.  相似文献   

6.
Lanthanide doped core–multishell structured NaGdF4:Yb,Er@NaYF4:Yb@NaGdF4:Yb,Nd@NaYF4@NaGdF4:Yb,Tm@NaYF4 nanoparticles with power‐density independent orthogonal excitations‐emissions upconversion luminescence (UCL) were fabricated for the first time. The optical properties of these core–multishell structured nanoparticles were related to the absorption filtration effect of the NaGdF4:Yb,Tm layer. By tuning the thickness of the filtration layer, the nanoparticles can exhibit unique two independent groups of UCL: Tm3+ prominent UV/blue (UV=ultraviolet) UCL under the excitation at 980 nm and Er3+ prominent green/red UCL under the excitation at 796 nm. The filtration‐shell mediated orthogonal excitations‐emissions UCL are power‐density independent. As a proof of concept, the core–multishell nanoparticles are used in multi‐dimensional security design and imaging‐guided combined photodynamic therapy and chemotherapy.  相似文献   

7.
采用液相法成功制备了MWCNTs负载NaGdF_4∶Tb~(3+),Eu~(3+)纳米粒子的磁光热多功能复合纳米材料,并用XRD,SEM和EDS对其结构、组成和形貌进行了表征,结果表明:NaGdF_4∶Tb~(3+),Eu~(3+)纳米粒子为六方晶相,形貌为球形且尺寸分布均匀,直径大约为25 nm,并且均匀的包覆在MWCNTs的表面;通过PL,VSM和HTC对复合纳米材料的发光性能,磁性能和光热转换性能进行了表征,采用MTT法对多功能复合纳米材料的生物相容性进行了评估,结果表明:MWCNTs-NaGdF_4∶Tb~(3+),Eu~(3+)复合纳米材料具有良好的多色发光性能、磁性能、光热转换性能、低的毒性和良好的生物相容性。该种磁光热多功能复合纳米材料在生物标记、生物成像、肿瘤诊疗等领域有着广泛的应用前景。  相似文献   

8.
The facile and sensitive strategies for detections of nitroaromatic explosives are highly desirable in many challenging environments, especially for homeland security against terrorism. Here, we inkjet printed polyethylenimine (PEI)-coated Ce, Tb co-doped NaGdF4 nanorods (NaGdF4:Ce/Tb NRs) onto common filter paper to construct test paper for visual and instant detections of a typical explosive 2,4,6-trinitrophenol (TNP). Polyethylenimine molecules not only facilitate the formation of uniform NaGdF4 nanorods but also provide specific recognized sites for TNP by the acid–base pairing interaction. The resultant TNP bound at the surface of PEI-coated NaGdF4:Ce/Tb NRs can strongly quench the phosphorescence with a remarkably high quenching constant by the charge transfer mechanism from NaGdF4:Ce/Tb NRs to TNP. By printing of the probe on a piece of filter paper, trace amounts of TNP can be visually detected by the appearance of a dark color against a bright green background under a UV lamp. This test paper can detect TNP as low as 0.45 ng mm−2 by the naked eye, which provides a potential application in the rapid, on-line detections of explosives.  相似文献   

9.
After coating 20 Yb/2 Er:NaGdF4 core nanocrystals with a NaYbF4 shell, upconversion emission of the rare earth ions weakens. So far, the exact reason for this phenomenon is still unclear due to lack of the direct evidence. In this report, a core@shell@shell sandwich‐like structure is designed and fabricated to investigate this phenomenon. We find that high Yb3+ concentration in the shell has mainly two adverse impacts: it promotes not only the deleterious back energy transfer from Er3+ in the core to Yb3+ in the shell but also the energy transfer from Yb3+ in the core to Yb3+ in the shell. To obtain nanocrystals with high upconversion efficency, appropriate Yb3+ concentration should be introduced into the shell or the transition layer.  相似文献   

10.
We report a new mechanistic strategy for controlling and modifying the photon emission of lanthanides in a core–shell nanostructure by using interfacial energy transfer. By taking advantage of this mechanism with Gd3+ as the energy donor, we have realized efficient up‐ and down‐converted emissions from a series of lanthanide emitters (Eu3+, Tb3+, Dy3+, and Sm3+) in these core–shell nanoparticles, which do not need a migratory host sublattice. Moreover, we have demonstrated that the Gd3+‐mediated interfacial energy transfer, in contrast to energy migration, is the leading process contributing to the photon emission of lanthanide dopants for the NaGdF4@NaGdF4 core–shell system. Our finding suggests a new direction for research into better control of energy transfer at the nanometer length scale, which would help to stimulate new concepts for designing and improving photon emission of the lanthanide‐based luminescent materials.  相似文献   

11.
A novel single‐source precursor NaGd(TFA)4(diglyme) (TFA=trifluoroacetate) was synthesized, characterized thoroughly, and used to obtain the hexagonal phase of NaGdF4 nanoparticles as an efficient matrix for lanthanide‐doped upconverting nanocrystals (NCs) that convert near‐infrared radiation into shorter‐wavelength UV/visible light. These NCs were then used to prepare well‐characterized TiO2@NaGdF4:Yb3+,Tm3+ nanocomposites to extend the absorption range of the TiO2 photocatalyst from the UV to the IR region. While the visible/near IR part of the photoluminescent spectra remains almost unaffected by the presence of TiO2, the UV part is strongly quenched due to the absorption of TiO2 above its gap at approximately 380 nm by energy transfer or FRET. Preliminary results on the photocatalytic activity of the above obtained nanocomposites are presented.  相似文献   

12.
Cancer is one of the major diseases that seriously threaten human health. Drug delivery nanoplatforms for tumor treatment have attracted increasing attention owing to their unique advantages such as good specificity and few side effects. This study aimed to fabricate a pH-responsive drug release multifunctional nanoplatform NaGdF4:Yb,Er,Fe@Ce6@mSiO2-DOX. In the platform, Fe3+ doping enhanced the fluorescence intensity of NaGdF4:Yb, Er by 5.8 folds, and the mSiO2 shell substantially increased the specific surface area of nanomaterials (559.257 m2/g). The loading rates of chlorin e6 and doxorubicin hydrochloride (DOX) on NaGdF4:Yb,Er,Fe@Ce6@mSiO2-DOX reached 28.58 ± 0.85% and 87.53 ± 5.53%, respectively. Additionally, the DOX release rate from the nanoplatform was only 24.4% after 72 h at pH 7.4. However, under tumor microenvironment conditions (pH 5.0), the release rate of DOX increased to 85.3% after 72 h. The nanoplatform could generate reactive oxygen species (ROS) under 980 nm near-infrared excitation. Moreover, the nanoplatform exhibited a strong comprehensive killing efficiency against cancer cells. The viabilities of HeLa, MCF-7, and HepG2 cancer cells were only 18.5, 11.4, and 9.3%, respectively, after being treated with a combination of photodynamic therapy and chemotherapy. The constructed nanoplatform exhibits great application potential in cancer treatment.  相似文献   

13.
《Chemical physics letters》1987,133(5):425-428
The luminescence of NaGdF4:Ce,Eu has been investigated. After excitation of Ce3+ ions at room temperature, energy transfer to the Gd3+ions occurs, followed by migration over this sublattice to the Eu3+ions, resulting mainly in Eu3+ emission. At liquidhelium temperatures mainly Gd3+6P trap emission is observed. The Eu3+ emission in this system is remarkable, because ultraviolet Eu3+ emission (5H3-7FJ) is observed alongside the normal 5DJ emission in the visible region.  相似文献   

14.
We report the synthesis and characterization of cubic NaGdF4:Yb/Tm@NaGdF4:Mn core–shell structures. By taking advantage of energy transfer through Yb→Tm→Gd→Mn in these core–shell nanoparticles, we have realized upconversion emission of Mn2+ at room temperature in lanthanide tetrafluoride based host lattices. The upconverted Mn2+emission, enabled by trapping the excitation energy through a Gd3+ lattice, was validated by the observation of a decreased lifetime from 941 to 532 μs in the emission of Gd3+ at 310 nm (6P7/28S7/2). This multiphoton upconversion process can be further enhanced under pulsed laser excitation at high power densities. Both experimental and theoretical studies provide evidence for Mn2+ doping in the lanthanide‐based host lattice arising from the formation of F? vacancies around Mn2+ ions to maintain charge neutrality in the shell layer.  相似文献   

15.
Lanthanide‐doped upconversion nanoparticles (UCNPs) have attracted considerable attention for their application in biomedicine. Here, silica‐coated NaGdF4:Yb,Er/NaGdF4 nanoparticles with a tetrasubstituted carboxy aluminum phthalocyanine (AlC4Pc) photosensitizer covalently incorporated inside the silica shells were prepared and applied in the photodynamic therapy (PDT) and magnetic resonance imaging (MRI) of cancer cells. These UCNP@SiO2(AlC4Pc) nanoparticles were uniform in size, stable against photosensitizer leaching, and highly efficient in photogenerating cytotoxic singlet oxygen under near‐infrared (NIR) light. In vitro studies indicated that these nanoparticles could effectively kill cancer cells upon NIR irradiation. Moreover, the nanoparticles also demonstrated good MR contrast, both in aqueous solution and inside cells. This is the first time that NaGdF4:Yb,Er/NaGdF4 upconversion‐nanocrystal‐based multifunctional nanomaterials have been synthesized and applied in PDT. Our results show that these multifunctional nanoparticles are very promising for applications in versatile imaging diagnosis and as a therapy tool in biomedical engineering.  相似文献   

16.
Precise assessment of temperature is crucial in many physical, technological, and biological applications where optical thermometry has attracted considerable attention primarily due to fast response, contactless measurement route, and electromagnetic passivity. Rare-earth-doped thermographic phosphors that rely on ratiometric sensing are very efficient near and above room temperature. However, being dependent on the thermally-assisted migration of carriers to higher excited states, they are largely limited by the quenching of the activation mechanism at low temperatures. In this paper, we demonstrate a strategy to pass through this bottleneck by designing a linear colorimetric thermometer by which we could estimate down to 4 K. The change in perceptual color fidelity metric provides an accurate measure for the sensitivity of the thermometer that attains a maximum value of 0.86 K−1. Thermally coupled states in Er3+ are also used as a ratiometric sensor from room temperature to ∼140 K. The results obtained in this work clearly show that Yb3+−Er3+ co-doped NaGdF4 microcrystals are a promising system that enables reliable bimodal thermometry in a very wide temperature range from ultralow (4 K) to ambient (290 K) conditions.  相似文献   

17.
Multifunctional NaGdF4:Yb3+,Er3+,Nd3+@NaGdF4:Nd3+ core–shell nanoparticles (called Gd:Yb3+,Er3+,Nd3+@Gd:Nd3+ NPs) with simultaneously enhanced near‐infrared (NIR)‐visible (Vis) and NIR‐NIR dual‐conversion (up and down) luminescence (UCL/DCL) properties were successfully synthesized. The resulting core–shell NPs simultaneously emitted enhanced UCL at 522, 540, and 660 nm and DCL at 980 and 1060 nm under the excitation of a 793 nm laser. The enhanced UCL and DCL can be explained by complex energy‐transfer processes, Nd3+→Yb3+→Er3+ and Nd3+→Yb3+, respectively. The effects of Nd3+ concentration and shell thickness on the UCL/DCL properties were systematically investigated. The UCL and DCL properties of NPs were observed under the optimal conditions: a shell Nd3+ content of 20 % and a shell thickness of approximately 5 nm. Moreover, the Gd:Yb3+,Er3+,Nd3+@Gd:20 % Nd3+ NPs exhibited remarkable magnetic resonance imaging (MRI) properties similar to that of a clinical agent, Omniscan. Thus, the core–shell NPs with excellent UCL/DCL/magnetic resonance imaging (MRI) properties have great potential for both in vitro and in vivo multimodal bioimaging.  相似文献   

18.
Herein, we introduce a facile, user‐ and environmentally friendly (n‐octanol‐induced) oleic acid (OA)/ionic liquid (IL) two‐phase system for the phase‐ and size‐controllable synthesis of water‐soluble hexagonal rare earth (RE=La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (<50 nm). The unique role of the IL 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BmimPF6) and n‐octanol in modulating the phase structure and particle size are discussed in detail. More importantly, the mechanism of the (n‐octanol‐induced) OA/IL two‐phase system, the formation of the RE fluoride nanocrystals, and the distinctive size‐ and morphology‐controlling capacity of the system are presented. BmimPF6 is versatile in term of crystal‐phase manipulation, size and shape maintenance, and providing water solubility in a one‐step reaction. The luminescent properties of Er3+‐, Ho3+‐, and Tm3+‐doped LaF3, NaGdF4, and NaYF4 nanocrystals were also studied. It is worth noting that the as‐prepared products can be directly dispersed in water due to the hydrophilic property of Bmim+ (cationic part of the IL) as a capping agent. This advantageous feature has made the IL‐capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF4:Yb,Er nanocrystals before and after silica coating was conducted for further biological applications.  相似文献   

19.
室温下合成纺锤形貌六方相NaLnF_4(Ln=Nd,Sm,Eu,Gd,Tb)纳米颗粒   总被引:1,自引:0,他引:1  
室温下合成长250nm,宽100nm的纺锤形貌六方相的NaNdF4。NaEuF4,NaSmF4,NaGdF4和NaTbF4也用同样的方法获得。产物用XRD,TEM,HRTEM,FESEM和PL进行表征。PL光谱显示合成的NaEuF4的激发波长是394nm。NaEuF4有4个特征发射谱带,分别是591,615,650和681nm。  相似文献   

20.
Eu3+-doped CdWO4 was prepared for the first time by a hydrothermal method. The structure, morphology, and luminescence of the Eu3+-doped CdWO4 were characterized. TEM results revealed that the pure CdWO4 was a nanorod with a width of about 50 nm. The photoluminescent properties of Eu3+-doped CdWO4 complexes indicated energy transfer from WO4 2? groups to Eu3+ and suggested effective doping of Eu3+ into the lattice of CdWO4. The photocatalytic activity of CdWO4 and Eu3+-doped CdWO4 was investigated by the photodegradation of methyl orange (MO). Eu3+-doped CdWO4 had enhanced photocatalytic activity in the photodegradation of MO. The hydroxyl radical was detected by the terephthalic acid photoluminescence (TA-PL) method, and the regular change revealed that the hydroxyl radical may be the active species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号