首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this study, a model hydrophilic drug (porphyrin) was encapsulated within hydrophobic polylactic acid (PLA) nanoparticles (NPs) with different crystallinity and the relevant release behaviors were investigated. The crystalline modification was done using a modified nanoprecipitation method, where homo and stereocomplexed PLA NPs with different average diameters based on varying polymer concentrations and solvent/nonsolvent ratios (S/N) were prepared. Entrapment efficiency and drug release of sterocomplexed-PLA NPs were compared with neat poly(l -lactic acid) (PLLA) NPs. Furthermore, to get the more sustained release, porphyrin-loaded NPs were immobilized within electrospun poly(d ,l -lactide-co-glycolide (PLGA) nanofibers (NFs). Outcomes revealed that solution concentration and solvent/nonsolvent ratio play significant roles in the formation of homo and stereocomplexed NPs. On the other hand, it was found that the formation of stereocrystals did not significantly affect the size and morphology of NPs compared with neat NPs. With regard to the entrapment efficiency and drug content, stereocomplexd-PLA NPs behave relatively the same as neat PLLA NPs while the more sustained release was observed for stereocomplexed NPs. Also, it was observed that electrospinning of PLGA solution loaded by NPs led to the uniform distribution of NPs into PLGA fibers. Encapsulating the drug-loaded NPs into nanofibers decreased the rate of drug release by 50% after 24 h, compared with direct loading of drug into PLGA NFs. We conclude that it is possible to tune the entrapment efficiency and modify the release rate of the drug by giving small changes in the process parameters without altering the physical properties of the original drug substance and polymer.  相似文献   

2.
Capillary electrophoretic (CE) methods were used for the quantitative determination of model drugs [salbutamol sulphate (SS), sodium cromoglycate (SCG) and beclomethasone dipropionate (BDP)] in poly(D,L-lactic acid) (PLA) nanoparticles, which were prepared by the nanoprecipitation method. Zeta potential and size distribution of the nanoparticles were determined by electrophoretic mobility determinations and photon correlation spectroscopy, respectively. Interactions between the drugs, the PLA nanoparticles and the fused-silica capillary were investigated by electrokinetic capillary chromatography (EKC). A quantitative CE method was developed for salbutamol sulphate and sodium cromoglycate, and the linearity and repeatability of migration times, peak areas and peak heights were determined. Microemulsion electrokinetic chromatography was used for the quantitative determination of beclomethasone dipropionate. According to this study, the applied electromigration techniques were suitable for the interaction, drug entrapment and dissolution studies of pharmaceutical nanoparticles. The results suggest that even quantitation of the drug located inside the nanoparticles was possible. Encapsulation of the more hydrophilic model drugs (SS, SCG) in the PLA nanoparticles was less efficient than in the case of BDP.  相似文献   

3.
Uniform-sized biodegradable PLA/PLGA microcapsules loading recombinant human insulin (rhI) were successfully prepared by combining a Shirasu Porous Glass (SPG) membrane emulsification technique and a double emulsion-evaporation method. An aqueous phase containing rhI was used as the inner water phase (w1), and PLA/PLGA and Arlacel 83 were dissolved in a mixture solvent of dichloromethane (DCM) and toluene, which was used as the oil phase (o). These two solutions were emulsified by a homogenizer to form a w1/o primary emulsion. The primary emulsion was permeated through the uniform pores of a SPG membrane into an outer water phase by the pressure of nitrogen gas to form the uniform w1/o/w2 droplets. The solid polymer microcapsules were obtained by simply evaporating solvent from droplets. Various factors of the preparation process influencing the drug encapsulation efficiency and the drug cumulative release were investigated systemically. The results indicated that the drug encapsulation efficiency and the cumulative release were affected by the PLA/PLGA ratio, NaCl concentration in outer water phase, the inner water phase volume, rhI-loading amount, pH-value in outer water phase and the size of microcapsules. By optimizing the preparation process, the drug encapsulation efficiency was high up to 91.82%. The unique advantage of preparing drug-loaded microcapsules by membrane emulsification technique is that the size of microcapsules can be controlled accurately, and thus the drug cumulative release profile can be adjusted just by changing the size of microcapsules. Moreover, much higher encapsulation efficiency can be obtained when compared with the conventional mechanical stirring method.  相似文献   

4.
Classically, drug-loaded poly(alkylcyanoacrylate) colloidal carriers are prepared by the drug entrapment during emulsion polymerization. However, a number of chemically sensitive drugs are unstable in the conditions of polymerization or can be irreversibly inactivated by the highly reactive monomer. Furthermore, the particle size distribution and the molecular weight of formed polymer depend strongly on the polymerization conditions. Here, we investigate the nanoprecipitation approach for the preparation of pure and drug-load poly(butylcyanoacrylate) nanoparticles. This method allows the successful entrapment of lipophilic and chemically labile drugs by avoiding the contact with highly reactive monomers. The anticancer agent chlorambucil is chosen as the model drug for the incorporation and release studies. Pure and drug-loaded nanoparticles are successfully prepared using various stabilizers (Polysorbate 80, Pluronic F68, Dextran 40). The nanoparticles coated with Polysorbate 80 are of highest interest since they could overcome the blood–brain barrier and the multidrug resistance in cancer cells. Such nanoparticles can be easily prepared by the nanoprecipitation approach reported here.  相似文献   

5.
The water-soluble anti-cancer drug, 5-fluorouracil (5-fluoro-2,4-pyrimidinedione) (5-FU) is encapsulated into biodegradable co-poly ( -lactic/glycolic acid) (PLGA) using the spray drying method for the development of long-lasting controlled release systems. In this study, the effects of both polymeric composition and technological parameters on release profiles of 5-FU were investigated. The degradation of various microspheres was also investigated. The mixture of dichloromethane/chloroform/methanol (1:1:2 v/v) instead of dichloromethane/chloroform (1:1 v/v) resulted in the modification of morphology, while the physical structure of the microsphere varied from a porous PLGA microsphere to a dense PLGA microsphere. The results show that the average diameter was 2 μm and the anti-cancer drug loading of microspheres approached approximately 8% (w/w). In addition, the lactide/glycolide ratio of the polymer is an important parameter for controlling the release profile of the entrapped anticancer drug. Our results indicate that the mixture solvent using the spray drying method was more efficient than emulsification solvent diffusion.  相似文献   

6.
A carbon dioxide (CO(2))-based microencapsulation technique was used to impregnate indomethacin, a model drug, into biodegradable polymer nanoparticles. Compressed CO(2) was emulsified into aqueous suspensions of biodegradable particles. The CO(2) plasticizes the biodegradable polymers, increasing the drug diffusion rate in the particles so that drug loading is enhanced. Four types of biodegradable polymers were investigated, including poly(d,l-lactic acid) (PLA), poly(d,l-lactic acid-co-glycolic acid) (PLGA) with two different molar ratios of LA to GA, and a poly(d,l-lactic acid-b-ethylene glycol) (PLA-PEG) block copolymer. Biodegradable nanoparticles were prepared from polymer solutions through nonsolvent-induced precipitation in the presence of surfactants. Indomethacin was incorporated into biodegradable nanoparticles with no change of the particle size and morphology. The effects of a variety of experimental variables on the drug loadings were investigated. It was found that the drug loading was the highest for PLA homopolymer and decreased in PLGA copolymers as the fraction of glycolic acid increased. Indomethacin was predicted to have higher solubility in PLA than in PLGA based on the calculated solubility parameters. The drug loading in PLA increased markedly as the temperature for impregnation was increased from 35 to 45 degrees C. Drug release from the particles is a diffusion-controlled process, and sustained release can be maintained over 10 h. A simple Fickian diffusion model was used to estimate the diffusion coefficients of indomethacin in the biodegradable polymers. The diffusion coefficients are consistent with previous studies, suggesting that the polymer properties are unchanged by supercritical fluid processing. Supercritical CO(2) is nontoxic, easily separated from the polymers, can extract residual organic solvent, and can sterilize biodegradable polymers. The CO(2)-based microencapsulation technique is promising for the production of drug delivery devices without the use of harmful solvents.  相似文献   

7.
生物可降解5-氟尿嘧啶载药微球的制备及性能研究   总被引:5,自引:0,他引:5  
5-氟尿嘧啶(5-Fu)为水溶性嘧啶类抗代谢药,是治疗实体肿瘤的首选药物.但5-Fu毒性很大,血浆中停留半衰期t1/2仅为10~20min.为了减少氟尿嘧啶的毒副作用并提高药物利用率,可以将其制成聚合物载药微球.聚酯类高分子是较为常用的生物降解型药物载体材料,其中聚乳酸(PLA)及其共聚物具有良好的生物相容性及生物可降解性,常被广泛应用于药物缓释材料,  相似文献   

8.
In this work, the producing of a biodegradable poly(l-lactide) (PLA)/poly(ethylene glycol) (PEG) microcapsule by emulsion solvent evaporation method was investigated. The effect of PEG segments added to the PLA microcapsules on the degradation, size distribution, and release behavior was studied. According to the results, PLA/PEG copolymer was more hydrophilic than PLA homopolymer, and with lower glass transition temperature. The surface of PLA/PEG microcapsules was not as smooth as that of PLA microcapsules, the mean diameters of prepared PLA and PLA/PEG microcapsules were 40 and 57 microm, respectively. And spherical forms were observed by the image analyzer and the scanning electron microscope (SEM). Drug release from microcapsules was affected by the properties of PLA/PEG copolymers determined by UV-vis spectra. It was found that the drug release rates of the microcapsules were significantly increased with adding of PEG, which explained by increasing hydrophilic groups.  相似文献   

9.
Triptolide (TP), which has immunosuppressive effect, anti-neoplastic activity, anti-fertility function and severe toxicities on digestive, urogenital, blood circulatory system, was used as a model drug in this study. TP-loaded poly (d,l-lactic acid) (PLA) nanoparticles were prepared by the modified spontaneous emulsification solvent diffusion method (modified-SESD method). Dynamic light scattering system (DLS), transmission electron microscope (TEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), X-ray powder diffractometry and Fourier transform infra-red spectroscopy (FT-IR) were employed to characterize the nanoparticles fabricated for size and size distribution, surface morphology, the physical state of drug in nanoparticles, and the interaction between the drug and polymer. Encapsulation efficiency (EE) and the in vitro release of TP in nanoparticles were measured by the reverse phase high-performance liquid chromatography (RP-HPLC). The produced nanoparticles exhibited a narrow size distribution with a mean size of approximately 150 nm and polydispersity index of 0.088. The morphology of the nanoparticles exhibited a fine spherical shape with smooth surfaces without aggregation or adhesion. TP-entrapped in nanoparticles was found in the form of amorphous or semicrystalline. It was found that a weak interaction existed between the drug and polymer. In all experiments, more than 65% of EE were obtained. The in vitro release profile of TP from nanoparticles exhibited a typical biphasic release phenomenon, namely initial burst release and consequently sustained release. In this case, the particle size played an important role for the drug release. The modified-SESD method was a potential and advantage method to produce an ideal polymer nanoparticles for drug delivery system (DDS).  相似文献   

10.
Diblock and multiblock copolymers composed of a poly(D,L-lactide) (PLA) or poly(trimethylene carbonate) (PTMC) core with a hydrophilic chain of poly(ethylene glycol) (PEG) were prepared. These copolymers, in which the core is connected to PEG through a polyfunctional molecule such as citric, mucic, or tartaric acid, may be used to form nanoparticles for drug delivery applications. Branched copolymers were prepared by direct amidation between the polyfunctional acid and methoxy PEGamine, followed by ring-opening polymerization of lactide or trimethyl carbonate to form the PLA and PTMC block copolymers. In addition, a complex multiblock copolymer of biotin-PEG-poly[lactic-co-(glycolic acid)] (PLGA) for application in an avidin-biotin system was prepared for possible design of nanospheres with targeting properties. Studies of drug release from polymeric systems containing multiblock copolymers and studies of polymer degradation were also performed.  相似文献   

11.
Treatment of cancer is one of the most challenging problems and conventional therapies are inadequate for targeted, effective and safe therapy. Development of nanoparticle-based drug delivery systems emerge as promising carriers in this field to ensure delivery of anticancer drug to tumor site. The aim of this study was to design hydroxypropyl-β-cyclodextrin (CD) coated nanoparticles using poly(ε-caprolactone) (PCL) and its derivative poly(ethylene glycol)-block-poly(ε-caprolactone) (mePEG-PCL) to be applied as implants to tumor site following surgical operation in cancer patients. CD coated PCL and mePEG-PCL nanospheres were developed to encapsulate poorly soluble chemotherapeutic agent docetaxel (DOC) to improve solubility of drug and to enhance cellular penetration with longer residence time and higher local drug concentration. Nanospheres were prepared according to the nanoprecipitation method and coated with hydroxypropyl-β-cyclodextrin (Cavasol® W7HP). Cyclodextrin coating was performed for higher drug encapsulation and controlled but complete drug release from nanoparticles. Nanoparticle diameters varied between 60 and 136 nm depending on polymer used for preparation and coating. All nanoparticles have negative surface charge and zeta potential values varied between ?22 and ?37 mV. Encapsulation efficiency of formulations were found to be between 46 and 73 % and CD coated nanoparticles have significantly higher entrapment efficiency. Drug release profiles of nanoparticles were similar to each other and all formulations released encapsulated drug in approximately 12 h. Especially, CD-PCL nanoparticles were found to have highest entrapment efficiency and anticancer efficacy against MCF-7 human breast adenocarcinoma cell lines. Our study proved that polycaprolactone and its PEGylated derivatives can be suitable for development of implantable nanoparticles as a potential drug delivery system of DOC for cancer treatment and a good candidate for further in vivo studies.  相似文献   

12.
The aim of this work was to prepare nanoparticles bearing sugar residues at their surface through the synthesis of amphiphilic block copolymer of poly d,l‐lactide (PLA) and poly(ethylene glycol)methacrylate, with the hydrophilic part terminating with glucopyranoside molecules as a model for any carbohydrate ligand. The construction was achieved by a combination of click chemistry, ring‐opening polymerization, and atom transfer radical polymerization. The modified monomer and resulting copolymer were characterized by NMR, SEC, and FTIR. Nanoparticles with a mean hydrodynamic diameter of <200 nm as determined by quasi‐elastic light scattering were prepared from the amphiphilic copolymer by nanoprecipitation using dimethylformamide (DMF) as water‐miscible solvent. In the range of 2.5–10 mg copolymer/mL DMF, the polymer concentration did not have much effect on the size of the nanoparticles. Accessibility of glucopyranoside molecules on the surface of the nanoparticles was confirmed by formation of aggregates from nanoparticles in the presence of concanavalin A observed by transmission electronic microscopy. Finally, no significant cytotoxicity toward human umbilical vein endothelial cells was detected for the final nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3178–3187, 2010  相似文献   

13.
涂布溶剂对涂敷型手性固定相手性识别能力的影响   总被引:2,自引:0,他引:2  
陈小明  杨利  邹汉法 《分析化学》2000,28(7):879-882
以微晶纤维素为原料,在非均相乙酰化条件下反应合成了微晶纤维素三醋酸酯。分别以二氯甲烷、三氯甲烷作涂布溶剂,采用减压蒸发溶剂法将其涂布在硅胶上制备成适宜于高效液相色谱上用的涂敷型手性固定相,得到的CSPs对反-2,3-二苯基环氧乙烷和吡喹酮均具有较好的手性识别能力。  相似文献   

14.
功能化纳米粒子作为药物载体的研究   总被引:1,自引:0,他引:1  
李家诗  张琰  陈杰  王朝华  郎美东 《化学学报》2009,67(19):2205-2209
将合成的含有羧基侧基官能团的己内酯类聚合物, 用溶剂挥发与超声乳化相结合的方法制备成表面可供修饰的纳米粒子. 利用扫描电镜(SEM)研究了纳米粒子在水溶液中的形态. 使用5-氟脲嘧啶(5-FU)作为模型药物制备了载药纳米粒子, 利用紫外分光光度计法、差示扫描量热法(DSC)、X射线衍射法(XRD)研究了纳米粒子的载药及释放性能. 研究表明, 载药纳米粒子可以控制5-FU的释放速率. 释放时间可持续至96 h 以上, 符合Higuchi 动力学方程.  相似文献   

15.
A new hyperbranched poly (amine‐ester)‐poly (lactide‐co‐glycolide) copolymer (HPAE‐co‐PLGA) was synthesized by ring‐opening polymerization of D , L ‐lactide (DLLA) glycolid and branched poly (amine‐ester) (HPAE‐OHs) with Sn(Oct)2 as catalyst. The chemical structures of copolymers were determined by FT‐IR, 1H‐NMR(13C NMR), TGA and their molecular weights were determined by gel permeation chromatography (GPC). Paclitaxel‐loaded copolymer nanoparticles were prepared by the nanoprecipitation method. Their physicochemical characteristics, e.g. morphology and nanoparticles size distribution were then evaluated by means of fluorescence spectroscopy, environmental scanning electron microscopy (ESEM), and dynamic light scattering (DLS). Paclitaxel‐loaded nanoparticles assumed a spherical shape and have unimodal size distribution. It was found that the chemical composition of the nanoparticles was a key factor in controlling nanoparticles size, drug‐loading content, and drug release behavior. As the molar ratio of DL ‐lactide/glycolide to HPAE increased, the nanoparticles size and drug‐loading content increased, and the drug release rate decreased. The antitumor activity of the paclitaxel‐loaded HPAE‐co‐PLGA nanoparticles against human liver cancer H7402 cells was evaluated by 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) method. The paclitaxel‐loaded HPAE‐co‐PLGA nanoparticles showed comparable anticancer efficacy with the free drug. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, we report the functionalization of silica nanoparticles with highly photoreactive phenyl azido groups and their utility as a negatively charged building block for layer-by-layer (LbL) electrostatic assembly to produce a stable silica nanoparticle coating. Azido-terminated silica nanoparticles were prepared by the functionalization of bare silica nanoparticles with 3-aminopropyltrimethoxysilane followed by the reaction with 4-azidobenzoic acid. The azido functionalization was confirmed by FTIR and XPS. Poly(allylamine hydrochloride) was also grafted with phenyl azido groups and used as photoreactive polycations for LbL assembly. For the photoreactive silica nanoparticle/polycation multilayers, UV irradiation can induce the covalent cross-linking within the multilayers as well as the anchoring of the multilayer film onto the organic substrate, through azido photochemical reactions including C-H insertion/abstraction reactions with surrounding molecules and dimerization of azido groups. Our results show that the stability of the silica nanoparticle/polycation multilayer film was greatly improved after UV irradiation. Combined with a fluoroalkylsilane post-treatment, the photoreactive LbL multilayers were used as a coating for superhydrophobic modification of cotton fabrics. Herein the LbL assembly method enables us to tailor the number of the coated silica nanoparticles through the assembly cycles. The superhydrophobicity of cotton fabrics was durable against acids, bases, and organic solvents, as well as repeated machine wash. Because of the unique azido photochemistry, the approach used here to anchor silica nanoparticles is applicable to almost any organic substrate.  相似文献   

17.
Both linear and star-shaped poly(glycidyl methacrylate) (PGMA) polymers were modified with different amines and used to prepare pH-sensitive nano-assemblies. Nanoprecipitation technique and dialysis method were used to prepare the polymeric nanoparticles. These nano-assemblies showed pH-sensitive disassociation properties under an acidic condition. The polymers were quite effective in encapsulation of Congo red (CR). Atom force microscopy images showed that the nanoparticles prepared using nanoprecipitation technique are spherical before and after encapsulation of CR. The disassociation pH, encapsulation efficiency, loading capacity and release properties of these polymers were found to depend on their backbone architecture and the amine type. By adjusting of these factors, such type of polymers hold promise as an interesting drug delivery vehicle.  相似文献   

18.
The current investigation describes in detail the influence of the polymer molar mass as well as polymer‐solvent interactions on the formation of nanoparticles using the nanoprecipitation methodology. For this purpose, a homologous series of poly(methyl methacrylate)s with molar masses ranging from 7,700 to 274,000 g mol?1 was prepared. Subsequently nanoprecipitation was performed in an automated and systematic manner using liquid handling robots and a variation of different initial concentrations of the polymers and solvent/nonsolvent ratios. To elucidate information about the polymer behavior in the solvents used for the nanoprecipitation procedure (acetone, tetrahydrofuran), intrinsic viscosity measurements were performed. The nanoparticle formulations were examined in terms of particle size and size distribution, particle shape as well as zeta‐potential. The conditions for the preparation of stable and uniform nanoparticles, regardless of molar mass and hydrodynamic volume of the initial polymer, were determined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Polylactic acid (PLA) nanoparticles coated with Gd(III)‐based metallosurfactants (MS) are prepared using a simple and rapid one‐step method, flash nanoprecipitation (FNP), for magnetic resonance imaging (MRI) applications. By co‐assembling the Gd(III)‐based MS and an amphiphilic polymer, methoxy poly(ethylene glycol)‐b‐poly(?‐caprolactone) (mPEG‐b‐PCL), PLA cores were rapidly encapsulated to form biocompatible T1 contrast agents with tunable particle size and narrow size distribution. The hydrophobic property of Gd(III)‐based MS were finely tuned to achieve their high loading efficiency. The size of the nanoparticles was easily controlled by tuning the stream velocity, Reynolds number and the amount of the amphiphilic block copolymer during the FNP process. Under the optimized condition, the relaxivity of the nanoparticles was achieved up to 35.39 mM?1 s?1 (at 1.5 T), which is over 8 times of clinically used MRI contrast agents, demonstrating the potential application for MR imaging.  相似文献   

20.
Broad-band superhydrophobic antireflective (AR) coatings in near infrared (NIR) region were readily fabricated on silicon or quartz substrates by a layer-by-layer (LbL) assembly technique. First, a porous poly(diallyldimethylammonium chloride) (PDDA)/SiO2 nanoparticle multilayer coating with AR property was prepared by LbL deposition of PDDA and 200 nm SiO2 nanoparticles. PDDA was then alternately assembled with sodium silicate on the PDDA/SiO2 nanoparticle coating to prepare a two-level hierarchical surface. Superhydrophobic AR coating with a water contact angle of 154 degrees was finally obtained after chemical vapor deposition of a layer of fluoroalkylsilane on the hierarchical surface. Quartz substrate with the as-fabricated superhydrophobic AR coating has a maximal transmittance above 98% of incidence light in the NIR region, which is increased by five percent compared with bare quartz substrate. Simultaneously, the superhydrophobic property endows the AR coating with water-repellent ability. Such superhydrophobic AR coatings can effectively avoid the disturbance of water vapor on their AR property and are expected to be applicable under humid environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号