首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li  X.  Wang  S.  Xia  K.  Tong  T. 《Experimental Mechanics》2021,61(3):461-468
Background

Understanding the dynamic tensile response of microwave damaged rock is of great significance to promote the development of microwave-assisted hard rock breakage technology. However, most of the current research on this issue is limited to static loading conditions, which is inconsistent with the dynamic stress circumstances encountered in real rock-breaking operations.

Objective

The objective of this work is to investigate the effects of microwave irradiation on the dynamic tensile strength, full-field displacement distribution and average fracture energy of a granitic rock.

Methods

The split Hopkinson pressure bar (SHPB) system combined with digital image correlation (DIC) technique is adopted to conduct the experiments. The overload phenomenon, which refers to the strength over-estimation phenomenon in the Brazilian test, is validated using the conventional strain gauge method. Based on the DIC analysis, a new approach for calculating the average fracture energy is proposed.

Results

Experimental results show that both the apparent and true tensile strengths increase with the loading rate while decreasing with the increase of the irradiation duration; and the true tensile strength after overload correction is lower than the apparent strength. Besides, the overload ratio and fracture energy also show the loading rate and irradiation duration dependency.

Conclusions

Our findings prove clearly that microwave irradiation significantly weakens the dynamic tensile properties of granitic rock.

  相似文献   

2.
Jin  Y.  Ren  Q.  Liu  J.  Zhang  Y.  Zheng  H.  Zhao  P. 《Experimental Mechanics》2022,62(5):761-767
Background

As a one-atom-thick material, the mechanical loading of graphene in large scale remains a challenge, and the maximum tensile strain that can be realized is through a flexible substrate, but only with a value of 1.8% due to the weak interfacial stress transfer.

Objective

Aims to illustrate the interface reinforcement brought by formvar resins as a buffering layer between graphene and substrates.

Methods

Single crystal graphene transferred to different substrates, applied with uniaxial stretching to compare the interface strength, and finite element analysis was performed to simulate tensile process for studying the influence of Poisson’s ratio of the buffering layer for interface reinforcement.

Results

In this work we use formvar resins as a buffering layer to achieve a maximum uniaxial tensile strain of 3.3% in graphene, close to the theoretical limit (3.7%) that graphene can achieve by flexible substrate stretching. The interface reinforcement by formvar is significantly higher than that by other polymers, which is attributed to the liquid–solid phase transition of formvar for more conformal interfacial contact and its suitable Poisson’s ratio with graphene to avoid its buckling along the transverse direction.

Conclusions

We believe that these results can provide guidance for the design of substrates and interfaces for graphene loading, as well as the support for mechanics analysis of graphene-based flexible electronic devices.

  相似文献   

3.
Cortes  S.  Cobo-Losey  N.  Haberman  M. R.  Seepersad  C. C.  Kovar  D. 《Experimental Mechanics》2021,61(5):843-858
Background

Conventional composites used in damping applications exhibit an undesirable tradeoff between stiffness and energy dissipation. Recent research demonstrates that it is possible to simultaneously achieve increased stiffness and energy dissipation for a configuration of a viscoelastic polymer matrix placed in parallel with a negative stiffness structure (NSS). This configuration resulted in energy dissipation equal to the sum of its components but is difficult to implement in practice.

Objective

In this paper, an alternative configuration is investigated in which the NSS is embedded simultaneously in series and parallel with the matrix. The main objectives are to examine the tradeoff between the stiffness and energy dissipation of the composite and to identify the mechanisms for enhanced energy dissipation.

Methods

To achieve this, FEA models were used to match the stiffness of a polymer matrix with that of a metallic NSS. Multiple specimens were manufactured and tested under quasi-static compressive loads to determine the force versus displacement curves and calculate the energy dissipation and stiffness.

Results

These tests demonstrate that the total energy dissipation of the composite can be greater than the sum of its components, while maintaining the benefit of increasing the stiffness and damping capacity simultaneously. The results also demonstrate that the applied strain rate plays a critical role in activating the NSS, which is essential to achieve the desired increase in energy dissipation.

Conclusions

The results indicate that localized strain and strain rate at the interface between the NSS and polymer matrix are the main contributors to achieving energy dissipation beyond the sum of its components. Furthermore, it was demonstrated that the strain rate affects the activation of the NSS and therefore composites containing mechanically activated NSS must be designed for the strain rate of interest.

  相似文献   

4.
Abstract

An analytical model for the initial transverse stiffness of a sinusoidally corrugated plate is derived, incorporating deformations due to extension, shear, and bending. A nondimensional plot is developed for determining transverse stiffness based on thickness and corrugation for a range of plate geometries. This model shows that for most corrugated plates the transverse stiffness is dramatically decreased from that of an uncomigated plate of the same thickness. For thin plates, a simple approximate polynomial expression for initial transverse stiffness is obtained. For thick plates with a small degree of corrugation, transverse stiffness is not negligible relative to longitudinal stiffness. The exact model is verified using a linear-elastic two-dimensional finite element model.  相似文献   

5.
Two governing factors that influence the electrochemical behaviors of lithium-ion batteries (LIBs), namely, state of charge (SOC) and state of health (SOH), are constantly interchanged, thus hindering the understanding of the mechanical integrity of LIBs. This study investigates the electrochemical failure of LIBs with various SOHs and SOCs subjected to abusive mechanical loading. Comprehensive experiments on LiNi0.8CoO15Al0.05O2 (NCA) LIB show that SOH reduction leads to structural stiffness and that the change trend varies with SOC value. Low SOH, however, may mitigate this phenomenon. Electrochemical failure strain at short circuit has no relationship with SOC or SOH, whereas failure stress increases with the increase of SOC value. Experiments on three types of batteries, namely, NCA, LiCoO2 (LCO), and LiFePO4 (LFP) batteries, indicate that their mechanical behaviors share similar SOH-dependency properties. SOH also significantly influences failure stress, temperature increase, and stiffness, whereas its effect on failure strain is minimal. Results may provide valuable insights for the fundamental understanding of the electrochemically and mechanically coupled integrity of LIBs and establish a solid foundation for LIB crash-safety design in electric vehicles.  相似文献   

6.
Miyano  Y.  Nakada  M.  Kageta  S. 《Experimental Mechanics》2021,61(7):1171-1179
Background

The tensile strength along the longitudinal direction of unidirectional carbon fiber reinforced plastics (CFRPs) constitutes important data for the reliable design of CFRP structures. Our earlier reports proposed the formulations for the statistical static, creep, and fatigue strengths of CFRP based on Christensen’s model of the viscoelastic crack kinetics.

Objective

This study is concerned with the statistical assessment of the tensile static, creep, and fatigue strengths of unidirectional CFRPs by using the proposed formulations and the characterization of the long-term strengths of unidirectional CFRPs.

Method

First, the proposed formulations for the time-dependent and temperature-dependent statistical static, creep, and fatigue strengths of CFRP are introduced. Second, the tensile static, creep and fatigue strengths of unidirectional CFRP are measured statistically at various temperatures using resin-impregnated CFRP strands as tensile test specimens by measuring the viscoelasticity of the matrix resin. Finally, the master curves showing the long-term life of these strengths are constructed by substituting these measured data into the formulations.

Results

The results clarify that the formulations are applicable with high reliability over wide ranges of time and temperature for the statistical tensile static, creep and fatigue strengths of unidirectional CFRP except above the glass transition temperature of the matrix resin. Therefore, the fatigue strength degradation phenomena of unidirectional CFRPs can be expressed by the time- and temperature-dependent part due to the viscoelastic behavior of the matrix resin and the number of load cycle-dependent parts.

Conclusions

The long-term life prediction of unidirectional CFRPs under static, creep and fatigue tension loadings can be determined by ascertaining the mechanical properties of the CFRP and matrix resin in the proposed formulations.

  相似文献   

7.
Gohl  J. A.  Thiele-Sardina  T. C.  Rencheck  M. L.  Erk  K. A.  Davis  C. S. 《Experimental Mechanics》2021,61(7):1209-1213
Background

Peel tests are frequently used to perform measurements of adhesive strength for pressure sensitive adhesive (PSA) tapes. Current lab methodologies for 90° peel tests translate the model substrate orthogonally to the peel direction in order to maintain the peel angle, precluding testing from immovable substrates.

Objective

It was our objective to develop a peel fixture capable of testing temporary pavement marking (TPM) tapes and other PSA tapes from immovable substrates such as roadways surfaces.

Methods

We present a modular peel fixture for conducting peel experiments directly on immovable substrates. The fixture was validated through a series of peel tests on consumer tapes to reproduce the linear width dependence and viscoelastic rate dependence found in traditional peeling setups. To test the capabilities of the fixture, a series of peel tests were conducted with various tapes on controlled surfaces, and a commercial tape on various immovable substrates.

Results

We demonstrate the ability of our fixture to reproduce results reported for traditional peel tests from literature. In addition, we were able to conduct peel tests directly on immovable substrates such as the benchtop.

Conclusions

This fixture shows potential for both traditional peeling tests, and for use in in-situ peel experiments from substrates relevant to the end application of the PSA tape.

  相似文献   

8.
Two types of peeling experiments are performed in the present research. One is for the Al film/Al2O3 substrate system with an adhesive layer between the film and the substrate. The other one is for the Cu film/Al2O3 substrate system without adhesive layer between the film and the substrate, and the Cu films are electroplated onto the Al2O3 substrates. For the case with adhesive layer, two kinds of adhesives are selected, which are all the mixtures of epoxy and polyimide with mass ratios 1:1.5 and 1:1, respectively. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling process. The effects of the adhesive layer on the energy release rate are analyzed. Using the experimental results, several analytical criteria for the steady-state peeling based on the bending model and on the two-dimensional finite element analysis model are critically assessed. Through assessment of analytical models, we find that the cohesive zone criterion based on the beam bend model is suitable for a weak interface strength case and it describes a macroscale fracture process zone case, while the two-dimensional finite element model is effective to both the strong interface and weak interface, and it describes a small-scale fracture process zone case.  相似文献   

9.
Moreno  J.  Escobedo  D.  Calhoun  C.  Le Saux  C. Jourdan  Han  H. C. 《Experimental Mechanics》2021,61(1):217-228
Background

Pulmonary artery hypertension (PAH) is a complex disorder that can lead to right heart failure. The generation of caveolin-1 deficient mice (CAV-1?/?) has provided an alternative genetic model to study the mechanisms of pulmonary hypertension. However, the vascular adaptations in these mice have not been characterized.

Objective

To determine the histological and functional changes in the pulmonary and carotid arteries in CAV-1?/? induced PAH.

Methods

Pulmonary and carotid arteries of young (4–6 months old) and mature (9–12 months old) CAV-1?/? mice were tested and compared to normal wild type mice.

Results

Artery stiffness increases in CAV-1?/? mice, especially the circumferential stiffness of the pulmonary arteries. Increases in stiffness were quantified by a decrease in circumferential stretch and transition strain, increases in elastic moduli, and an increase in total strain energy at physiologic strains. Changes in mechanical properties for the pulmonary artery correlated with increased collagen content while changes in the carotid artery correlated with decreased elastin content.

Conclusions

We demonstrated that an increase in artery stiffness is associated with CAV-1 deficiency-induced pulmonary hypertension. These results improve our understanding of arterial remodeling in PAH.

  相似文献   

10.
In the present study, peel tests and inverse analysis were performed to determine the interracial mechanical parameters for the metal film/ceramic system with an epoxy interface layer between film and ceramic. Al films with a series of thicknesses between 20 and 250 μm and three peel angles of 90°, 135° and 180° were considered. A finite element model with the cohesive zone elements was used to simulate the peeling process. The finite element results were taken as the training data of a neural network in the inverse analysis. The interracial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result  相似文献   

11.
The cyclic stress in lithium-ion battery electrodes induced by repeated charge and discharge cycles causes electrode degradation and fracture, resulting in reduced battery performance and lifetime. To investigate electrode mechanics as a function of electrochemical cycling, we utilize digital image correlation (DIC) to measure the strains that develop in lithium-ion battery electrodes during lithiation and delithiation processes. A composite graphite electrode is cycled galvanostatically (with constant current) in a custom battery cell while optical images of the electrode surface are captured in situ. The strain in the electrode is computed using an in-house DIC code. On average, an unconstrained composite graphite electrode expands 1.41 % during lithiation and contracts 1.33 % during delithiation. These strain values compare favorably with predictions based on the elastic properties of the composite electrode and the expansion of graphite-lithium intercalation compounds (G-LICs). The establishment of this experimental protocol will enable future studies of the relationship between electrode mechanics and battery performance.  相似文献   

12.
Gonabadi  H.  Oila  A.  Yadav  A.  Bull  S. 《Experimental Mechanics》2022,62(4):585-602
Background

Fatigue failure criteria for fibre reinforced polymer composites used in the design of marine structures are based on the micromechanical behaviour (e.g. stiffness properties) of their constituents. In the literature, there is a lack of information regarding the stiffness degradation of fibres, polymer matrix and fibre/matrix interface regions affected by environmental fatigue.

Objective

The aim of present study is to characterize the stiffness properties of composite constituents using the nanoindentation technique when fatigue failure of composites is due to the combined effect of sea water exposure and cyclic mechanical loads.

Methods

In the present study, the nanoindentation technique was used to characterize the stiffness properties of composite constituents where the effects of neighbouring phases, material pile up and viscoplasticity properties of the polymer matrix are corrected by finite element simulation.

Results

The use of finite element simulation in conjunction with nanoindentation test data, results in more accurate estimation of projected indented area which is required for measuring the properties of composite constituents. In addition, finite element simulation provides a greater understanding of the stress transfer between composite constituents during the nanoindentation process.

Conclusions

Results of nanoindentation testing on the composite microstructure of environmentally fatigue failed composite test coupons establish a strong link to the stiffness degradation of the fiber/matrix interface regions, verifying the degradation of composite constituents identified by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis.

  相似文献   

13.
In the framework of non-equilibrium thermodynamics, we derive a new model for many-particle electrodes. The model is applied to \(\text {LiFePO}_{4}\) (LFP) electrodes consisting of many LFP particles of nanometer size. The phase transition from a lithium-poor to a lithium-rich phase within LFP electrodes is controlled by both different particle sizes and surface fluctuations leading to a system of stochastic differential equations. An explicit relation between battery voltage and current controlled by the thermodynamic state variables is derived. This voltage–current relation reveals that in thin LFP electrodes lithium intercalation from the particle surfaces into the LFP particles is the principal rate-limiting process. There are only two constant kinetic parameters in the model describing the intercalation rate and the fluctuation strength, respectively. The model correctly predicts several features of LFP electrodes, viz. the phase transition, the observed voltage plateaus, hysteresis and the rate-limiting capacity. Moreover we study the impact of both the particle size distribution and the active surface area on the voltage–charge characteristics of the electrode. Finally we carefully discuss the phase transition for varying charging/discharging rates.  相似文献   

14.
As a state-of-the-art secondary battery, lithium-ion batteries (LIBs) have dominated the consumer electronics market since Sony unveiled the commercial secondary battery with LiCoO2 as the negative electrode material in the early 1990s. The key to the efficient operation of LIBs lies in the effective contact between the Li-ion-rich electrolyte and the active material particles in the electrode. The particle properties of the electrode materials affect the lithium ion diffusion path, diffusion resistance, contact area with the active material, the electrochemical performance and the energy density of batteries. To achieve satisfied comprehensive performance and of LIBs, it is not only necessary to focus on the modification of materials, but also to balance the properties of electrode material particles. Therefore, in this review, we analyze the influence of particle properties on the battery performance from three perspectives: particle size, particle size distribution, and particle shape. A deep understanding of the effect and mechanism of particles on electrodes and batteries will help develop and manufacture practical LIBs.  相似文献   

15.
薄膜非线性撕裂三种弯曲模型的解答及讨论   总被引:2,自引:0,他引:2  
魏悦广 《力学学报》2003,35(6):677-689
针对薄膜非线性撕裂的弯曲模型,引入了3种表征薄膜撕裂过程的双参数准则.这3种表征分别为:(1)界面断裂韧度和分离应力; (2)界面断裂韧度和薄膜的裂尖转角; (3)界面断裂韧度和薄膜在裂尖的临界Mises等效应变.从3种双参数准则入手,分析并给出了针对上述各准则的薄膜非线性撕裂问题的解答.通过分析和比较,建立弯曲模型解答与严格平面应变弹塑性分析解答之间的关联.  相似文献   

16.
ABSTRACT

Grillages of maximum strength and maximum stiffness and fiber-reinforced plates of maximum strength are considered. Using a technique developed earlier, optimal solutions are given for a large number of boundary shapes. In all problems discussed, the flexural systems are clamped along all boundaries and the loading is given by an arbitrary nonnegative function.  相似文献   

17.
A new model of porous electrodes based on the Gibbs free energy is developed, in which lithium-ion(Liion) diffusion, diffusion-induced stress(DIS), Butler–Volmer(BV) reaction kinetics, and size polydispersity of electrode particles are considered. The influence of BV reaction kinetics and concentration-dependent exchange current density(ECD) on concentration profile and DIS evolution are numerically investigated. BV reaction kinetics leads to a decrease in Li-ion concentration and DIS. In addition, concentrationdependent ECD results in a decrease in Li-ion concentration and an increase in DIS. Size polydispersity of electrode particles significantly affects the concentration profile and DIS.Optimal macroscopic state of charge(SOC) should consider the influence of the microscopic SOC values and mass fractions of differently sized particles.  相似文献   

18.
A multi-scale representative volume element (RVE) for modeling the tensile behavior of carbon nanotube-reinforced composites is proposed. The RVE integrates nanomechanics and continuum mechanics, thus bridging the length scales from the nano- through the mesoscale. A progressive fracture model based on the modified Morse interatomic potential is used for simulating the behavior of the isolated carbon nanotubes and the FE method for modeling the matrix and building the RVE. Between the nanotube and the matrix a perfect bonding is assumed until the interfacial shear stress exceeds the corresponding strength. Then, nanotube/matrix debonding is simulated by prohibiting load transfer in the debonded region. Using the RVE, a unidirectional nanotube/polymer composite was modeled and the results were compared with corresponding rule-of-mixtures predictions. A significant enhancement in the stiffness of the polymer owing to the adding of the nanotubes is predicted. The effect of interfacial shear strength on the tensile behavior of the nanocomposite was also studied. Stiffness is found to be unaffected while tensile strength to significantly decrease with decreasing the interfacial shear strength.  相似文献   

19.
Polymer-supported metal films as interconnects for flexible, large area electronics may rupture when they are stretched, and the rupture strain is strongly dependent upon the film/substrate interfacial properties. This paper investigates the influence of interfacial properties on the ductility of polymer-supported metal films by modeling the microstructure of the metal film as well as the film/substrate interface using the method of finite elements and the cohesive zone model (CZM). The influence of various system parameters including substrate thickness, Young’s modulus of substrate material, film/substrate interfacial stiffness, strength and interfacial fracture energy on the ductility of polymer-supported metal films is systematically studied. Obtained results demonstrate that the ductility of polymer-supported metal films increases as the interfacial strength increases, but the increasing trend is affected distinctly by the interfacial stiffness.  相似文献   

20.
Layered structures are ubiquitous, from one-atom thick layers in two-dimensional materials, to nanoscale lipid bi-layers, and to micro and millimeter thick layers in composites. The mechanical behavior of layered structures heavily depends on the interfacial properties and is of great interest in engineering practice. In this work, we give an analytical solution of the bending rigidity of bilayered structures as a function of the interfacial shear strength. Our results show that while the critical bending stiffness when the interface starts to slide plastically is proportional to the interfacial shear strength, there is a strong nonlinearity between the rigidity and the applied bending after interfacial plastic shearing. We further give semi-analytical solutions to the bending of bilayers when both interfacial shearing and pre-existing crack are present in the interface of rectangular and circular bilayers. The analytical solutions are validated by using finite element simulations. Our analysis suggests that interfacial shearing resistance, interfacial stiffness and preexisting cracks dramatically influence the bending rigidity of bilayers. The results can be utilized to understand the significant stiffness difference in typical biostructures and novel materials, and may also be used for non-destructive detection of interfacial crack in composites when stiffness can be probed through vibration techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号