首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic pentapeptides (e.g. Ac‐(cyclo‐1,5)‐[KAXAD]‐NH2; X=Ala, 1 ; Arg, 2 ) in water adopt one α‐helical turn defined by three hydrogen bonds. NMR structure analysis reveals a slight distortion from α‐helicity at the C‐terminal aspartate caused by torsional restraints imposed by the K(i)–D(i+4) lactam bridge. To investigate this effect on helix nucleation, the more water‐soluble 2 was appended to N‐, C‐, or both termini of a palindromic peptide ARAARAARA (≤5 % helicity), resulting in 67, 92, or 100 % relative α‐helicity, as calculated from CD spectra. From the C‐terminus of peptides, 2 can nucleate at least six α‐helical turns. From the N‐terminus, imperfect alignment of the Asp5 backbone amide in 2 reduces helix nucleation, but is corrected by a second unit of 2 separated by 0–9 residues from the first. These cyclic peptides are extremely versatile helix nucleators that can be placed anywhere in 5–25 residue peptides, which correspond to most helix lengths in protein–protein interactions.  相似文献   

2.
刘翠  杨忠志 《中国科学B辑》2009,39(11):1461-1468
应用ABEEMσπ/MM模型进行分子动力学模拟,研究了显性水溶液中小α-螺旋(短肽Ala5)折叠/展开的可逆过程.动力学分析显示,300K下α-螺旋可以保存2ns的时间,该结果支持Margulis等人的结论.每个结构与α-螺旋结构骨架重原子的均方根偏差的时间轨迹指出,“300K下螺旋成核现象在0.1ns内快速发生”的结论是不恰当的.通过对300、400和500K温度下的研究,首次定量地给出各温度下螺旋保存的时间分别为2ns、1~1.5ns和0.8ns,并且增加温度并不改变折叠/展开的方式,只是改变折叠/展开的速率.本文对“转化态集合”结构的分析表明,从螺旋到卷曲的转换,主要通过螺旋端的氢键断裂发生(92%)、尤其是C端的氢键断裂发生(50%).氢键的破坏和形成在0.1ns的时间内完成.  相似文献   

3.
Transformation of proteins and peptides to fibrillar aggregates rich in β sheets underlies many diseases, but mechanistic details of these structural transitions are poorly understood. To simulate aggregation, four equivalents of a water‐soluble, α‐helical (65 %) amphipathic peptide (AEQLLQEAEQLLQEL) were assembled in parallel on an oxazole‐containing macrocyclic scaffold. The resulting 4α‐helix bundle is monomeric and even more α helical (85 %), but it is also unstable at pH 4 and undergoes concentration‐dependent conversion to β‐sheet aggregates and amyloid fibrils. Fibrils twist and grow with time, remaining flexible like rope (>1 μm long, 5–50 nm wide) with multiple strings (2 nm), before ageing to matted fibers. At pH 7 the fibrils revert back to soluble monomeric 4α‐helix bundles. During α→β folding we were able to detect soluble 310 helices in solution by using 2D‐NMR, CD and FTIR spectroscopy. This intermediate satisfies the need for peptide elongation, from the compressed α helix to the fully extended β strand/sheet, and is driven here by 310‐helix aggregation triggered in this case by template‐promoted helical bundling and by hydrogen‐bonding glutamic acid side chains. A mechanism involving α?α4?(310)4?(310)n?(β)n?m(β)n equilibria is plausible for this peptide and also for peptides lacking hydrogen‐bonding side chains, with unfavourable equilibria slowing the α→β conversion.  相似文献   

4.
A one‐handed 310‐helical hexapeptide is efficiently encapsulated within the helical cavity of st‐PMMA when a fullerene (C60) derivative is introduced at the C‐terminal end of the peptide. The encapsulation is accompanied by induction of a preferred‐handed helical conformation in the st‐PMMA backbone with the same‐handedness as that of the hexapeptide to form a crystalline st‐PMMA/peptide‐C60 inclusion complex with a unique optically active helix‐in‐helix structure. Although the st‐PMMA is unable to encapsulate the 310‐helical peptide without the terminal C60 unit, the helical hollow space of the st‐PMMA is almost filled by the C60‐bound peptides. This result suggests that the C60 moiety can serve as a versatile molecular carrier of specific molecules and polymers in the helical cavity of the st‐PMMA for the formation of an inclusion complex, thus producing unique supramolecular soft materials that cannot be prepared by other methods.  相似文献   

5.
The 20 residue long Trp‐cage is the smallest protein known, and thus has been the subject of several in vitro and in silico folding studies. Here, we report the multistate folding scenario of the miniprotein in atomic detail. We detected and characterized different intermediate states by temperature dependent NMR measurements of the 15N and 13C/15N labeled protein, both at neutral and acidic pH values. We developed a deconvolution technique to characterize the invisible—fully folded, unfolded and intermediate—fast exchanging states. Using nonlinear fitting methods we can obtain both the thermodynamic parameters (ΔHF–I, TmF–I, ΔCpF–I and ΔHI–U, TmI–U, ΔCpI–U) and the NMR chemical shifts of the conformers of the multistate unfolding process. During the unfolding of Trp‐cage distinct intermediates evolve: a fast‐exchanging intermediate is present under neutral conditions, whereas a slow‐exchanging intermediate‐pair emerges at acidic pH. The fast‐exchanging intermediate has a native‐like structure with a short α‐helix in the G11–G15 segment, whereas the slow‐exchanging intermediate‐pair presents elevated dynamics, with no detectable native‐like residue contacts in which the G11? P12 peptide bond has either cis or trans conformation. Heteronuclear relaxation studies combined with MD simulations revealed the source of backbone mobility and the nature of structural rearrangements during these transitions. The ability to detect structural and dynamic information about folding intermediates in vitro provides an excellent opportunity to gain new insights into the energetic aspects of the energy landscape of protein folding. Our new experimental data offer exceptional testing ground for further computational simulations.  相似文献   

6.
The influence of valine side chains on the folding/unfolding equilibrium and, in particular, on the 314‐helical propensity of β3‐peptides were investigated by means of molecular‐dynamics (MD) simulation. To that end, the valine side chains in two different β3‐peptides were substituted by leucine side chains. The resulting four peptides, of which three have never been synthesized, were simulated for 150 to 200 ns at 298 and 340 K, starting from a fully extended conformation. The simulation trajectories obtained were compared with respect to structural preferences and folding behavior. All four peptides showed a similar folding behavior and were found to predominantly adopt 314‐helical conformations, irrespective of the presence of valine side chains. No other well‐defined conformation was observed at significant population in any of the simulations. Our results imply that β3‐peptides show a structural preference for 314‐helices independent of the branching nature of the side chains, in contrast to what has been previously proposed on the basis of circular‐dichroism (CD) measurements.  相似文献   

7.
Helix formation is an elementary process in protein folding, influencing both the rate and mechanism of the global folding reaction. Yet, because helix formation is less cooperative than protein folding, the kinetics are often multiexponential, and the observed relaxation times are not straightforwardly related to the microscopic rates for helix nucleation and elongation. Recent ultrafast spectroscopic measurements on the peptide Ac-WAAAH(+)-NH(2) were best fit by two relaxation modes on the ~0.1-1 ns time scale, (1) apparently much faster than had previously been experimentally inferred for helix nucleation. Here, we use replica-exchange molecular dynamics simulations with an optimized all-atom protein force field (Amber ff03w) and an accurate water model (TIP4P/2005) to study the kinetics of helix formation in this peptide. We calculate temperature-dependent microscopic rate coefficients from the simulations by treating the dynamics between helical states as a Markov process using a recently developed formalism. The fluorescence relaxation curves obtained from simulated temperature jumps are in excellent agreement with the experimentally determined results. We find that the kinetics are multiphasic but can be approximated well by a double-exponential function. The major processes contributing to the relaxation are the shrinking of helical states at the C-terminal end and a faster re-equilibration among coil states. Despite the fast observed relaxation, the helix nucleation time is estimated from our model to be 20-70 ns at 300 K, with a dependence on temperature well described by Arrhenius kinetics.  相似文献   

8.
We used a combined approach of experiment and simulation to determine the helical population and folding pathway of a small helix forming blocked pentapeptide, Ac-(Ala)(5)-NH(2). Experimental structural characterization of this blocked peptide was carried out with far UV circular dichroism spectroscopy, FTIR, and NMR measurements. These measurements confirm the presence of the α-helical state in a buffer solution. Direct molecular dynamics and replica-exchange simulations of the pentapeptide were performed using several popular force fields with explicit solvent. The simulations yielded statistically reliable estimates of helix populations, melting curves, folding, and nucleation times. The distributions of conformer populations are used to measure folding cooperativity. Finally, a statistical analysis of the sample of helix-coil transition paths was performed. The details of the calculated helix populations, folding kinetics and pathways vary with the employed force field. Interestingly, the helix populations, folding, and unfolding times obtained from most of the studied force fields are in qualitative agreement with each other and with available experimental data, with the deviations corresponding to several kcal/mol in energy at 300 K. Most of the force fields also predict qualitatively similar transition paths, with unfolding initiated at the C-terminus. Accuracy of potential energy parameters, rather than conformational sampling may be the limiting factor in current molecular simulations.  相似文献   

9.
α‐Aminoxy peptides are peptidomimetic foldamers with high proteolytic and conformational stability. To gain an improved synthetic access to α‐aminoxy oligopeptides we used a straightforward combination of solution‐ and solid‐phase‐supported methods and obtained oligomers that showed a remarkable anticancer activity against a panel of cancer cell lines. We solved the first X‐ray crystal structure of an α‐aminoxy peptide with multiple turns around the helical axis. The crystal structure revealed a right‐handed 28‐helical conformation with precisely two residues per turn and a helical pitch of 5.8 Å. By 2D ROESY experiments, molecular dynamics simulations, and CD spectroscopy we were able to identify the 28‐helix as the predominant conformation in organic solvents. In aqueous solution, the α‐aminoxy peptides exist in the 28‐helical conformation at acidic pH, but exhibit remarkable changes in the secondary structure with increasing pH. The most cytotoxic α‐aminoxy peptides have an increased propensity to take up a 28‐helical conformation in the presence of a model membrane. This indicates a correlation between the 28‐helical conformation and the membranolytic activity observed in mode of action studies, thereby providing novel insights in the folding properties and the biological activity of α‐aminoxy peptides.  相似文献   

10.
Molecular chirality is ubiquitous in nature. The natural biopolymers, proteins and DNA, preferred a right‐handed helical bias due to the inherent stereochemistry of the monomer building blocks. Here, we are reporting a rare co‐existence of left‐ and right‐handed helical conformations and helix‐terminating property at the C‐terminus within a single molecule of α,γ‐hybrid peptide foldamers composed of achiral Aib (α‐aminoisobutyric acid) and 3,3‐dimethyl‐substituted γ‐amino acid (Adb; 4‐amino‐3,3‐dimethylbutanoic acid). At the molecular level, the left‐ and right‐handed helical screw sense of α,γ‐hybrid peptides are representing a macroscopic tendril perversion. The pronounced helix‐terminating behaviour of C‐terminal Adb residues was further explored to design helix–Schellman loop mimetics and to study their conformations in solution and single crystals. The stereochemical constraints of dialkyl substitutions on γ‐amino acids showed a marked impact on the folding behaviour of α,γ‐hybrid peptides.  相似文献   

11.
Covalent side‐chain cross‐links are a versatile method to control peptide folding, particularly when α‐helical secondary structure is the target. Here, we examine the application of oxime bridges, formed by the chemoselective reaction between aminooxy and aldehyde side chains, for the stabilization of a helical peptide involved in a protein–protein complex. A series of sequence variants of the dimeric coiled coil GCN4‐p1 bearing oxime bridges at solvent‐exposed positions were prepared and biophysically characterized. Triggered unmasking of a side‐chain aldehyde in situ and subsequent cyclization proceed rapidly and cleanly at pH 7 in the folded protein complex. Comparison of folding thermodynamics among a series of different oxime bridges show that the cross links are consistently stabilizing to the coiled coil, with the extent of stabilization sensitive to the exact size and structure of the macrocycle. X‐ray crystallographic analysis of a coiled coil with the best cross link in place and a second structure of its linear precursor show how the bridge is accommodated into an α‐helix. Preparation of a bicyclic oligomer by simultaneous formation of two linkages in situ demonstrates the potential use of triggered oxime formation to both trap and stabilize a particular peptide folded conformation in the bound state.  相似文献   

12.
Short peptides that fold into β‐hairpins are ideal model systems for investigating the mechanism of protein folding because their folding process shows dynamics typical of proteins. We performed folding, unfolding, and refolding molecular dynamics simulations (total of 2.7 μs) of the 10‐residue β‐hairpin peptide chignolin, which is the smallest β‐hairpin structure known to be stable in solution. Our results revealed the folding mechanism of chignolin, which comprises three steps. First, the folding begins with hydrophobic assembly. It brings the main chain together; subsequently, a nascent turn structure is formed. The second step is the conversion of the nascent turn into a tight turn structure along with interconversion of the hydrophobic packing and interstrand hydrogen bonds. Finally, the formation of the hydrogen‐bond network and the complete hydrophobic core as well as the arrangement of side‐chain–side‐chain interactions occur at approximately the same time. This three‐step mechanism appropriately interprets the folding process as involving a combination of previous inconsistent explanations of the folding mechanism of the β‐hairpin, that the first event of the folding is formation of hydrogen bonds and the second is that of the hydrophobic core, or vice versa.  相似文献   

13.
Ultrasound sonication of protein and peptide solutions is routinely used in biochemical, biophysical, pharmaceutical and medical sciences to facilitate and accelerate dissolution of macromolecules in both aqueous and organic solvents. However, the impact of ultrasound waves on folding/unfolding of treated proteins, in particular, on aggregation kinetics of amyloidogenic peptides and proteins is not understood. In this work, effects of ultrasound sonication on the misfolding and aggregation behavior of the Alzheimer's Aβ(1–40)‐peptide is studied by pulsed‐field gradient (PFG) spin–echo diffusion NMR and UV circular dichroism (CD) spectroscopy. Upon simple dissolution of Aβ(1–40) in perdeuterated trifluoroethanol, CF3‐CD2‐OD (TFE‐d3), the peptide is present in the solution as a stable monomer adopting α‐helical secondary structural motifs. The self‐diffusion coefficient of Aβ(1–40) monomers in TFE‐d3 was measured as 1.35 × 10?10 m2 s?1, reflecting its monomeric character. However, upon ultrasonic sonication for less than 5 min, considerable populations of Aβ molecules (ca 40%) form large aggregates as reflected in diffusion coefficients smaller than 4.0 × 10?13 m2 s?1. Sonication for longer times (up to 40 min in total) effectively reduces the fraction of these aggregates in 1H PFG NMR spectra to ca 25%. Additionally, absorption below 230 nm increased significantly upon sonication treatment, an observation, which also clearly confirms the ongoing aggregation process of Aβ(1–40) in TFE‐d3. Surprisingly, upon ultrasound sonication only small changes in the peptide secondary structure were detected by CD: the peptide molecules mainly adopt α‐helical motifs in both monomers and aggregates formed upon sonication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The fast folding/unfolding dynamics of an alanine-based α-helical model peptide was investigated using nanosecond temperature jump experiments in D2O. Temperature jumps were induced either by indirect heating, using visible laser pulses and a heat-transducing triphenylmethane dye, or by direct heating, using IR laser pulses. Although direct heating improves the quality, reliability and speed of the experiments, the heat-transducing dye was shown to not affect the helix-coil dynamics of alanine-based model peptides, thus validating the indirect heating method for this class of peptides. On the other hand, the presence of high concentrations of salt ions was found to alter the helix folding dynamics by screening of charged residues. We conclude that electrostatic interactions between residues have significant effects on the dynamics of helix folding. Similarly, the solvent pH was observed to affect the dynamics of helix folding, even in a range where no protonation/deprotonation is expected to occur.  相似文献   

15.
16.
The design and characterization of a hydrophobic cavity in de novo designed proteins provides a wide range of information about the functions of de novo proteins. We designed a de novo tetrameric coiled‐coil protein with a hydrophobic pocketlike cavity. Tetrameric coiled coils with hydrophobic cavities have previously been reported. By replacing one Leu residue at the a position with Ala, hydrophobic cavities that did not flatten out due to loose peptide chains were reliably created. To perform a detailed examination of the ligand‐binding characteristics of the cavities, we originally designed two other coiled‐coil proteins: AM2, with eight Ala substitutions at the adjacent a and d positions at the center of a bundled structure, and AM2W, with one Trp and seven Ala substitutions at the same positions. To increase the association of the helical peptides, each helical peptide was connected with flexible linkers, which resulted in a single peptide chain. These proteins exhibited CD spectra corresponding to superhelical structures, despite weakened hydrophobic packing. AM2W exhibited binding affinity for size‐complementary organic compounds. The dissociation constants, Kd, of AM2W were 220 nM for adamantane, 81 μM for 1‐adamantanol, and 294 μM for 1‐adamantaneacetic acid, as measured by fluorescence titration analyses. Although it was contrary to expectations, AM2 did not exhibit any binding affinity, probably due to structural defects around the designed hydrophobic cavity. Interestingly, AM2W exhibited incremental structure stability through ligand binding. Plugging of structural defects with organic ligands would be expected to facilitate protein folding.  相似文献   

17.
This study describes chirality‐ or template‐mediated helical induction in achiral β‐peptides for the first time. A strategy of end capping β‐peptides derived from β‐hGly (the smallest achiral β‐amino acid) with a chiral β‐amino acid that possesses a carbohydrate side chain (β‐Caa; C‐linked carbo β‐amino acid) or a small, robust helical template derived from β‐Caas, was adopted to investigate folding propensity. A single chiral (R)‐β‐Caa residue at the C‐ or N‐terminus in these oligomers led to a preponderance of right‐handed 12/10‐helical folds, which was reiterated more strongly in peptides capped at both the C‐ and N‐terminus. Likewise, the presence of a template (a 12/10‐helical trimer) at both the C‐ and N‐terminus resulted in a very robust helix. The propagation of the helical fold and its sustenance was found in a homo‐oligomeric sequence with as many as seven β‐hGly residues. In both cases, the induction of helicity was stronger from the N terminus, whereas an anchor at the C terminus resulted in reduced helical propensity. Although these oligomers have been theoretically predicted to favor a 12/10‐mixed helix in apolar solvents, this study provides the first experimental evidence for their existence. Diastereotopicity was found in both the methylene groups of the β‐hGly moieties due to chirality. Additionally, the β‐hGly units have shown split behavior in the conformational space to accommodate the 12/10‐helix. Thus, end capping to assist chiralty‐ or template‐mediated helical induction and stabilization in achiral β‐peptides is a very attractive strategy.  相似文献   

18.
A new three‐residue turn was serendipitously discovered in α/β hybrid peptides derived from alternating C‐linked carbo‐β‐amino acids (β‐Caa) and L ‐Ala residues. The three‐residue β‐α‐β turn at the C termini, nucleated by a helix at the N termini, resulted in helix‐turn (HT) supersecondary structures in these peptides. The turn in the HT motif is stabilized by two H bonds—CO(i?2)–NH(i), with a seven‐membered pseudoring (γ turn) in the backward direction, and NH(i?2)–CO(i), with a 13‐membered pseudoring in the forward direction (i being the last residue)—at the C termini. The study was extended to generalize the new three‐residue turn (β‐α‐β) by using different α and β‐amino acids. Furthermore, the HT motifs were efficiently converted, by an extension with helical oligomers at the C termini, into peptides with novel helix‐turn‐helix (HTH) tertiary structures. However, this resulted in the destabilization of the β‐α‐β turn with the concomitant nucleation of another three‐residue turn, α‐β‐β, which is stabilized by 11‐ and 15‐membered bifurcated H bonds. Extensive NMR spectroscopic studies were carried out to delineate the secondary and tertiary structures in these peptides, which are further supported by molecular dynamics (MD) investigations.  相似文献   

19.
Left or right handed alpha helicity can be induced in a pentapeptide (ANGYG) by appending left or right handed helical cycles as chiral templates. This sequence corresponds to a rare left handed helix found in the protein alanine racemase. Circular dichroism spectra reveal that pentapeptide ANGYG has no detectable structure in aq phosphate buffer, that it is an ambidextrous peptide in that it can be directed to fold into either a left handed or right handed alpha helix in water, with greater propensity for the uncommon left handed than the normal right handed conformation. A helix-inducing cyclic peptide at both ends of this peptide was more effective at inducing alpha helicity than a single cyclic peptide at one end. The alpha helical cyclic peptides provide novel tools for folding short peptides into thermodynamically unstable helices in water, and for studying factors that control chirality and helix induction.  相似文献   

20.
Metamorphic proteins are biomolecules prone to adopting alternative conformations. Because of this feature, they represent ideal systems to investigate the general rules allowing primary structure to dictate protein topology. A comparative molecular dynamics study was performed on the denatured states of two proteins, sharing nearly identical amino‐acid sequences (88 %) but different topologies, namely an all‐α‐helical bundle protein named GA88 and an α+β‐protein named GB88. The analysis allowed successful design of and experimental validation of a site‐directed mutant that promotes, at least in part, the switch in folding from GB88 to GA88. The mutated position, in which a glutamic acid was replaced by a glutamine, does not make any intramolecular interactions in the native state of GA88, such that its stabilization can be explained by considering the effects on the denatured state. The results represent a direct demonstration of the role of the denatured state in sculpting native structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号