首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We report the synthesis of new helical polymeric structures having alternating cis and trans double bonds and chiral amino acid side chains by metathesis cyclopolymerization. The polymer helicity, which is generated by the interaction between fluorenylmethyloxycarbonyl (Fmoc) groups in the side chains, is dramatically affected by solvents. A thorough experimental and theoretical analysis including nuclear magnetic resonance, atomic force microscopy, and density functional theory and molecular mechanics calculations suggests that the helicity of both backbone and side chains are determined by anti-syn rotation of the carbamate groups and by the different interactions of the Fmoc groups with solvents.  相似文献   

2.
To investigate the structural impact of phosphorylation on the human histone H1.0 C-terminal domain, we performed NMR structural studies of model peptides containing a single phosphorylation site: T118-H1.0 (T118PKK motif) and T140-H1.0 (T140PVK motif). Both model peptides are mainly disordered in aqueous solution in their non-phosphorylated and phosphorylated forms, but become structured in the presence of trifluoroethanol. The peptides T118-H1.0 and pT118-H1.0 contain two helical regions, a long amphipathic α helix spanning residues 104–115 and a short α/310 helix (residues 119–123), that are almost perpendicular in T118-H1.0 but have a poorly defined orientation in pT118-H1.0. Peptides T140-H1.0 and pT140-H1.0 form very similar α helices between residues 141–147. The TPKK and TPVK motifs show the same backbone conformation, but differ in their side-chain contacts; the Thr and pThr side chains interact with the i+2 Lys side chain in the TPKK motif, and with the i+3 Lys side chain in the TPVK motif. The pT phosphate group in pT118-H1.0 and pT140-H1.0 has pKa values below the intrinsic values, which can be explained by non-specific charge–charge interactions with nearby Lys. The non-polar Val in the TPVK motif accounts for the pT140 pKa being closer to the intrinsic pKa value than the pT118 pKa. Altogether, these results validate that minimalist strategies using model peptides can provide structural details difficult to obtain in short-lived intrinsically disordered proteins and domains.  相似文献   

3.
Cyclic pentapeptides (e.g. Ac‐(cyclo‐1,5)‐[KAXAD]‐NH2; X=Ala, 1 ; Arg, 2 ) in water adopt one α‐helical turn defined by three hydrogen bonds. NMR structure analysis reveals a slight distortion from α‐helicity at the C‐terminal aspartate caused by torsional restraints imposed by the K(i)–D(i+4) lactam bridge. To investigate this effect on helix nucleation, the more water‐soluble 2 was appended to N‐, C‐, or both termini of a palindromic peptide ARAARAARA (≤5 % helicity), resulting in 67, 92, or 100 % relative α‐helicity, as calculated from CD spectra. From the C‐terminus of peptides, 2 can nucleate at least six α‐helical turns. From the N‐terminus, imperfect alignment of the Asp5 backbone amide in 2 reduces helix nucleation, but is corrected by a second unit of 2 separated by 0–9 residues from the first. These cyclic peptides are extremely versatile helix nucleators that can be placed anywhere in 5–25 residue peptides, which correspond to most helix lengths in protein–protein interactions.  相似文献   

4.
The correlation between β2‐, β3‐, and β2,3‐amino acid‐residue configuration and stability of helix and hairpin‐turn secondary structures of peptides consisting of homologated proteinogenic amino acids is analyzed (Figs. 1–3). To test the power of Zn2+ ions in fortifying and/or enforcing secondary structures of β‐peptides, a β‐decapeptide, 1 , four β‐octapeptides, 2 – 5 , and a β‐hexadecapeptide, 10 , have been devised and synthesized. The design was such that the peptides would a) fold to a 14‐helix ( 1 and 3 ) or a hairpin turn ( 2 and 4 ), or form neither of these two secondary structures (i.e., 5 ), and b) carry the side chains of cysteine and histidine in positions, which will allow Zn2+ ions to use their extraordinary affinity for RS? and the imidazole N‐atoms for stabilizing or destabilizing the intrinsic secondary structures of the peptides. The β‐hexadecapeptide 10 was designed to a) fold to a turn, to which a 14‐helical structure is attached through a β‐dipeptide spacer, and b) contain two cysteine and two histidine side chains for Zn complexation, in order to possibly mimic a Zn‐finger motif. While CD spectra (Figs. 6–8 and 17) and ESI mass spectra (Figs. 9 and 18) are compatible with the expected effects of Zn2+ ions in all cases, it was shown by detailed NMR analyses of three of the peptides, i.e., 2, 3, 5 , in the absence and presence of ZnCl2, that i) β‐peptide 2 forms a hairpin turn in H2O, even without Zn complexation to the terminal β3hHis and β3hCys side chains (Fig. 11), ii) β‐peptide 3 , which is present as a 14‐helix in MeOH, is forced to a hairpin‐turn structure by Zn complexation in H2O (Fig. 12), and iii) β‐peptide 5 is poorly ordered in CD3OH (Fig. 13) and in H2O (Fig. 14), with far‐remote β3hCys and β3hHis residues, and has a distorted turn structure in the presence of Zn2+ ions in H2O, with proximate terminal Cys and His side chains (Fig. 15).  相似文献   

5.
Transformation of proteins and peptides to fibrillar aggregates rich in β sheets underlies many diseases, but mechanistic details of these structural transitions are poorly understood. To simulate aggregation, four equivalents of a water‐soluble, α‐helical (65 %) amphipathic peptide (AEQLLQEAEQLLQEL) were assembled in parallel on an oxazole‐containing macrocyclic scaffold. The resulting 4α‐helix bundle is monomeric and even more α helical (85 %), but it is also unstable at pH 4 and undergoes concentration‐dependent conversion to β‐sheet aggregates and amyloid fibrils. Fibrils twist and grow with time, remaining flexible like rope (>1 μm long, 5–50 nm wide) with multiple strings (2 nm), before ageing to matted fibers. At pH 7 the fibrils revert back to soluble monomeric 4α‐helix bundles. During α→β folding we were able to detect soluble 310 helices in solution by using 2D‐NMR, CD and FTIR spectroscopy. This intermediate satisfies the need for peptide elongation, from the compressed α helix to the fully extended β strand/sheet, and is driven here by 310‐helix aggregation triggered in this case by template‐promoted helical bundling and by hydrogen‐bonding glutamic acid side chains. A mechanism involving α?α4?(310)4?(310)n?(β)n?m(β)n equilibria is plausible for this peptide and also for peptides lacking hydrogen‐bonding side chains, with unfavourable equilibria slowing the α→β conversion.  相似文献   

6.
For the first time, the Petasis (borono‐Mannich) reaction is employed for the multicomponent labeling and stapling of peptides. The report includes the solid‐phase derivatization of peptides at the N‐terminus, Lys, and N?‐MeLys side‐chains by an on‐resin Petasis reaction with variation of the carbonyl and boronic acid components. Peptides were simultaneously functionalized with aryl/vinyl substituents bearing fluorescent/affinity tags and oxo components such as dihydroxyacetone, glyceraldehyde, glyoxylic acid, and aldoses, thus encompassing a powerful complexity‐generating approach without changing the charge of the peptides. The multicomponent stapling was conducted in solution by linking N?‐MeLys or Orn side‐chains, positioned at i, i+7 and i, i+4, with aryl tethers, while hydroxy carbonyl moieties were introduced as exocyclic fragments. The good efficiency and diversity oriented character of these methods show prospects for peptide drug discovery and chemical biology.  相似文献   

7.
For the first time, the Petasis (borono‐Mannich) reaction is employed for the multicomponent labeling and stapling of peptides. The report includes the solid‐phase derivatization of peptides at the N‐terminus, Lys, and N?‐MeLys side‐chains by an on‐resin Petasis reaction with variation of the carbonyl and boronic acid components. Peptides were simultaneously functionalized with aryl/vinyl substituents bearing fluorescent/affinity tags and oxo components such as dihydroxyacetone, glyceraldehyde, glyoxylic acid, and aldoses, thus encompassing a powerful complexity‐generating approach without changing the charge of the peptides. The multicomponent stapling was conducted in solution by linking N?‐MeLys or Orn side‐chains, positioned at i, i+7 and i, i+4, with aryl tethers, while hydroxy carbonyl moieties were introduced as exocyclic fragments. The good efficiency and diversity oriented character of these methods show prospects for peptide drug discovery and chemical biology.  相似文献   

8.
The interaction of β‐peptides with the DNA duplexes of dA20dT20 and a GCN4‐binding CRE sequence was examined. To gauge the factors that govern these interactions, two β‐pentadecapeptides, 1 and 2 , a β‐dodecapeptide, 3 , three β‐decapeptides, 4 – 6 , three β‐heptapeptides, 7 – 9 , and β‐octaarginine 10 were designed and synthesized. The β‐peptides were conceived to adopt a β‐peptide 314 helix, in which the side chains at position i and i + 3 are aligned vertically along one side of the helix. The side chains of Lys, Asn, and Arg were positioned such that potential H‐bonding sites were created for a helical conformation to interact with the base pairs of DNA. CD Analysis showed that β‐peptides 1, 2 , and 10 interacted with dA20dT20. In addition, β‐peptides 1 and 2 showed significant interaction with a DNA‐duplex 20mer containing the ATF/CREB recognition sequence for the regulatory protein GCN4. It is impossible, at this stage of the investigation, to make a safe proposal about the actual nature of the interaction of the structures(s) of the complexes, the formation of which is suggested by the CD spectra reported herein.  相似文献   

9.
Artificial ditopic receptors for the differentiation of phosphorylated peptides varying in i+3 amino acid side chains were synthesized, and their binding affinities and selectivities were determined. The synthetic receptors show the highest binding affinities to phosphorylated peptides under physiological conditions (HEPES, pH 7.5, 154 mM NaCl) reported thus far for artificial systems. The tight and selective binding was achieved by high cooperativity of the two binding moieties in the receptor molecules. All receptors interact with phosphorylated serine by bis(ZnII-cyclen) complex coordination and a second binding site recognizing a carboxylate or imidazole amino acid side chain functionality.  相似文献   

10.
A study on the effect of cysteic acid position on the types of fragment ions formed by collision-induced dissociation (CID) of [M – H] ions is presented. Of particular note is the observation of d-type fragment ions for peptides that contain an N-terminal cysteic acid (fixed negative charge) and cleavable amino acid side chains possessing a β-γ carbon–carbon bond. For example, the CID mass spectrum of oxidized cys-kemptide (CoxLRRASLG) [M – H + O3] ions contains abundant series of d-type fragment ions, and similar results are observed for oxidized cysteine-containing ribonuclease A proteolytic peptides. The d i fragment ions are assumed to arise by a charge-remote and/or charge-assisted fragmentation mechanism, which both occur at high collision energies and involve consecutive reactions (i.e., the formation of a i ions followed by the elimination of the side chain to form d i ions).  相似文献   

11.
An unprecedented , high degree of helicity as judged by CD spectroscopy is observed in N-templated model peptides of the type AcHel-(Ala4Lys)nAla2-NH2 (AcHel-Ala peptide pictured; AcHel is an N-terminal helix-inducing template for polypeptides). These results raise concern over the current methods for determining 100 % helicity.  相似文献   

12.
Xiao Hu  Bo Wu  Weiping Zheng 《中国化学》2019,37(3):244-248
Even though the bis‐lactam peptide stapling with the [i, i + 7] and the [i, i + 11] systems has been known to be able to afford % α‐helicity values up to 100% (25°C), the performance of the bis‐lactam peptide stapling with the [i, i + 4] system in current literature has been mediocre (% α‐helicity ≦40%, 25°C). In the current study, we found that high % α‐helicity is also obtainable with the bis‐lactam [i, i + 4]‐stapling by demonstrating with our model peptide sequence that the bis‐lactam [i, i + 4]‐stapling with Nεpara‐phenylenediacetyl‐lysine was able to afford a % α‐helicity value of ~64.1% (25°C). Therefore, the bis‐lactam [i, i + 4]‐stapling could also be an efficacious peptide stapling mode that can be employed for biomedical applications.  相似文献   

13.
Due to their equivalent lengths, δ-amino acids can serve as surrogates of α-dipeptides. However, δ-amino acids with proteinogenic side chains have not been well studied because of synthetic difficulties and because of their insolubility in organic solvents. Recently we reported the spontaneous supramolecular gelation of δ-peptides composed of β(O)-δ5-amino acids. Here, we report the incorporation of β(O)-δ5-amino acids as guests into the host α-helix, α,γ-hybrid peptide 12-helix and their single-crystal conformations. In addition, we studied the solution conformations of hybrid peptides composed of 1:1 alternating α and β(O)-δ5-amino acids. In contrast to the control α-helix structures, the crystal structure of peptides with β(O)-δ5-amino acids exhibit α-helical conformations consisting of both 13- and 10-membered H-bonds. The α,δ-hybrid peptide adopted mixed 13/11-helix conformation in solution with alternating H-bond directionality. Crystal-structure analysis revealed that the α,γ4-hybrid peptide accommodated the guest β(O)-δ5-amino acid without significant deviation to the overall helix folding. The results reported here emphasize that β(O)-δ5-amino acids with proteinogenic side chains can be accommodated into regular α-helix or 12-helix as guests without much deviation of the overall helix folding of the peptides.  相似文献   

14.
Novel three‐residue helix‐turn secondary structures, nucleated by a helix at the N terminus, were generated in peptides that have ‘β‐Caa‐L ‐Ala‐L ‐Ala,’ ‘β‐Caa‐L ‐Ala‐γ‐Caa,’ and ‘β‐Caa‐L ‐Ala‐δ‐Caa’ (in which βCaa is C‐linked carbo‐β‐amino acid, γCaa is C‐linked carbo‐γ‐amino acid, and δ‐Caa is C‐linked carbo‐δ‐amino acid) at the C terminus. These turn structures are stabilized by 12‐, 14‐, and 15‐membered (mr) hydrogen bonding between NH(i)/CO(i+2) (i+2 is the last residue in the peptide) along with a 7‐mr hydrogen bond between CO(i)/NH(i+2). In addition, a series of α/β‐peptides were designed and synthesized with alternating glycine (Gly) and (S)‐β‐Caa to study the influence of an achiral α‐residue on the helix and helix‐turn structures. In contrast to previous results, the three ‘β–α–β’ residues at the C terminus (α‐residue being Gly) are stabilized by only a 13‐mr forward hydrogen bond, which resembles an α‐turn. Extensive NMR spectroscopic and molecular dynamics (MD) studies were performed to support these observations. The influence of chirality and side chain is also discussed.  相似文献   

15.
Dendritic side chains have been used to modify the binding environment in anthracene‐based synthetic carbohydrate receptors. Control of length, charge, and branching enabled the positioning of side‐chain carboxylate groups in such a way that they assisted in binding substrates rather than blocking the cavity. Conformational degeneracy in the dendrimers resulted in effective preorganization despite the flexibility of the system. Strong binding was observed to glucosammonium ions in water, with Ka values up to 7000 M ?1. Affinities for uncharged substrates (glucose and N‐acetylglucosamine) were also enhanced, despite competition from solvent and the absence of electrostatic interactions.  相似文献   

16.
Inspired by naturally occurring DNA‐binding proteins and their artificial α‐peptidic mimics reported to date, a research project was initiated aiming at creating a new class of β‐peptides capable of binding to and ultimately regulating the functions of DNA. As an initial foray, a β3‐pentadecapeptide 1 , which bears H‐bonding Asn side chains and positively charged Lys side chains, was designed and synthesized on the solid support. DNA‐Complexation studies by means of circular dichroism and DNA‐melting‐temperature measurements revealed the first preliminary indications that support the existence of ordered interactions between β‐peptides and DNA.  相似文献   

17.
Maintaining specific conformations of peptide ligands is crucial for improving the efficacy of biological interactions. Here, a one‐pot polymerization strategy for stabilizing the α‐helical conformation of peptides while simultaneously constructing multimeric ligands is presented. The new method, termed stapling polymerization, uses radical polymerization between acryloylated peptide side chains and vinylic monomers. Studies with model peptides indicate that i, i+7 crosslinking is effective for the helix stabilization, whereas i, i+4 crosslinking is not. The stapling polymerization results in the formation of peptide–polyacrylamide conjugates that include ≈3–16 peptides in a single conjugate. This stapling polymerization provides a simple but powerful methodology to fabricate multimeric α‐helices that can further be developed to modulate multivalent biomacromolecular interactions.

  相似文献   


18.
在启发式亲脂势HMLP (heuristic molecular lipophilicity potential)的基础上提出了分子、分子片段和原子的亲水指标和亲脂指标. 计算出了20个天然氨基酸侧链的亲水、亲脂指标和亲水、亲脂表面积, 并用线性自由能函数表达氨基酸侧链的溶剂化自由能, ΔGsol,iθb0b1Lib2Hib3Sib4Si. . 应用线性自由能函数和氨基酸侧链的亲水和亲脂指标, 计算了20个氨基酸残基的3种相转移自由能(蒸气-水、蒸气-正辛醇、正辛醇-水)和正辛醇-水分配系数logPow, 取得了与实验值高度一致的良好效果. HMLP的亲水和亲脂指标是HMLP的指标化, 扩展了这一方法的使用范围. 氨基酸侧链的亲水、亲脂指标和线性自由能函数有望用于生物大分子受体与配体的结合自由能的估算、蛋白质的结构与功能、蛋白-蛋白相互作用和识别的研究.  相似文献   

19.
Peptides of homochiral α‐aminoxy acids of nonpolar side chains can form a 1.88‐helix. In this paper, we report the conformational studies of α‐aminoxy peptides 1 , 2 , 3 , which have functionalized side chains, in both nonpolar and polar solvents. 1H NMR, XRD, and FTIR absorption studies confirm the presence of the eight‐membered‐ring intramolecular hydrogen bonds (the N‐O turns) in nonpolar solvents as well as in methanol. CD studies of peptides 1 , 2 , 3 in different solvents indicate that a substantial degree of helical content is retained in methanol and acidic aqueous buffers. The introduction of functionalized side chains in α‐aminoxy peptides provides opportunities for designing biologically active peptides.  相似文献   

20.
New advances into the chirality effect in the self‐assembly of block copolymers (BCPs) have been achieved by tuning the helicity of the chiral‐core‐forming blocks. The chiral BCPs {[N?P(R)‐O2C20H12]200?x[N?P(OC5H4N)2]x}‐b‐ [N?PMePh]50 ((R)‐O2C20H12=(R)‐1,1′‐binaphthyl‐2,2′‐dioxy, OC5H4N=4‐pyridinoxy (OPy); x=10, 30, 60, 100 for 3 a – d , respectively), in which the [N?P(OPy)2] units are randomly distributed within the chiral block, have been synthesised. The chiroptical properties of the BCPs ([α]D vs. T and CD) demonstrated that the helicity of the BCP chains may be simply controlled by the relative proportion of the chiral and achiral (i.e., [N?P(R)‐O2C20H12] and [N?P(OPy)2], respectively) units. Thus, although 3 a only contained only 5 % [N?P(OPy)2] units and exhibited a preferential helical sense, 3 d with 50 % of this unit adopted non‐preferred helical conformations. This gradual variation of the helicity allowed us to examine the chirality effect on the self‐assembly of chiral and helical BCPs (i.e., 3 a – c ) and chiral but non‐helical BCPs (i.e., 3 d ). The very significant influence of the helicity on the self‐assembly of these materials resulted in a variety of morphologies that extend from helical nanostructures to pearl‐necklace aggregates and nanospheres (i.e., 3 b and 3 d , respectively). We also demonstrate that the presence of pyridine moieties in BCPs 3 a – d allows specific decoration with gold nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号