首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We describe herein an original approach for the efficient immortal ring-opening polymerization (iROP) of trimethylene carbonate (TMC) under mild conditions using dual-catalyst systems combining a discrete cationic metal complex with a tertiary amine. A series of new zinc and magnesium cationic complexes of the type [{NNO}M](+) [anion](-) ({NNO}(-) = 2,4-di-tert-butyl-6-{[(2'-dimethylaminoethyl)methylamino]methyl}phenolate; M = Zn, [anion](-) = [B(C(6)F(5))(4)](-) (2), [H(2)N-{B(C(6)F(5))(3)}(2)](-) (3), and [EtB(C(6)F(5))(3)](-) (4); M = Mg, [anion](-) = [H(2)N{B(C(6)F(5))(3)}(2)](-) (7)) have been prepared from the corresponding neutral compounds [{NNO}ZnEt] (1) and [{NNO}-Mg(nBu)] (6). Compounds 2-4 and 7 exist as free ion pairs, as revealed by (1)H, (13)C, (19)F, and (11) B?NMR spectroscopy in THF solution, and an X-ray crystallographic analysis of the bis(THF) adduct of compound 7, 7?(THF)(2). The neutral complexes 1 and 6, in combination with one equivalent or an excess of benzyl alcohol (BnOH), initiate the rapid iROP of TMC, in bulk or in toluene solution, at 45-60?°C (turnover frequency, TOF, up to 25-30,000?mol(TMC)?mol(Zn)?h(-1) for 1 and 220-240,000?mol(TMC)?mol(Mg)?h(-1) for 6), to afford H-PTMC-OBn with controlled macromolecular features. ROP reactions mediated by the cationic systems 2/BnOH and 7/BnOH proceeded much more slowly (TOF up to 500 and 3000?mol(TMC)?mol(Zn or Mg)?h(-1) at 110?°C) than those based on the parent neutral compounds 1/BnOH and 6/BnOH, respectively. Use of original dual organic/organometallic catalyst systems, obtained by adding 0.2-5?equiv of a tertiary amine such as NEt(3) to zinc cationic complexes [{NNO}Zn](+) [anion](-) (2-4), promoted high activities (TOF up to 18,300?mol(TMC)?mol(Zn)?h(-1) at 45?°C) giving H-PTMC-OBn with good control over the M(n) and M(w)/M(n) values. Variation of the nature of the anion in 2-4 did not significantly affect the performance of these catalyst systems. On the other hand, the dual magnesium-based catalyst system 7/NEt(3) proved to be poorly effective.  相似文献   

2.
The enzymatic degradation and polymerization using an enzyme were carried out with respect to the establishment of a sustainable chemical recycling system for poly(trimethylene carbonate) [P(TMC)] which is a potentially biodegradable synthetic plastic. The enzymatic transformation of P(TMC)s having an Mn of 3000~48000 using Candida antarctica lipase (lipase CA) in acetonitrile at 70 °C afforded the corresponding cyclic monomer, trimethylene carbonate (TMC: 1,3‐dioxan‐2‐one), in a yield of up to 80%. Thus obtained TMC readily polymerized again using both fresh lipase CA and recovered lipase CA.  相似文献   

3.
The direct enzymatic synthesis of a cyclic trimethylene carbonate (1,3‐dioxane‐2‐one) monomer with/without a methyl substituent was carried out using dimethyl or diethyl carbonate and 1,3‐diol with the objective of producing aliphatic poly(trimethylene carbonate), a typical biodegradable synthetic plastic. The lipase‐catalyzed condensation of dimethyl or diethyl carbonate with aliphatic 1,3‐diols using immobilized Candida antarctica lipase (lipase CA) in an organic solvent at 70 °C afforded the corresponding methyl‐substituted and unsubstituted cyclic trimethylene carbonates. The cyclic trimethylene carbonates obtained by the reaction of dimethyl or diethyl carbonates with 1,3‐propanediol and 2‐methyl‐1,3‐propanediol were polymerized by lipase to produce the corresponding polycarbonates.

Total TMC yield as a function of the reaction time.  相似文献   


4.
In this paper, ring-opening polymerization of trimethylene carbonate (TMC) with rare earth (Nd, Y, La) p-tert-butylcalix[n]arene (n=4, 6, and 8) complexes as catalysts has been studied. Poly(trimethylene carbonate) (PTMC) with Mv of 21,400 was produced by bulk polymerization under the conditions as follows: [TMC]0/[Nd] (molar ratio)=1000,80℃,8h. Mechanism study reveals that the polymerization proceeds via a coordination mechanism.  相似文献   

5.
The ring‐opening polymerization (ROP) of trimethylene carbonate (TMC) using imidodiphosphoric acid (IDPA) as the organocatalyst and benzyl alcohol (BnOH) as the initiator has been investigated. The polymerization proceeded without decarboxylation to afford poly(trimethylene carbonate) (PTMiC) with controlled molecular weight and narrow polydispersity. 1H NMR, SEC, and MALDI‐TOF MS measurements of the obtained PTMC clearly indicated the quantitative incorporation of the initiator at the chain end. The controlled/living nature for the IDPA‐catalyzed ROP of TMC was confirmed by the kinetic and chain extension experiments. A bifunctional activation mechanism was proposed for IDPA catalysis based on NMR and FTIR studies. Additionally, 1,3‐propanediol, 1,1,1‐trimethylolpropane, and pentaerythritol were used as di‐ol, tri‐, and tetra‐ol initiators, producing the telechelic or star‐shaped polycarbonates with narrow polydispersity indices. The well‐defined diblock copolymers, poly(trimethylene carbonate)‐block‐poly(δ‐valerolactone) and poly(trimethylene carbonate)‐block‐poly(ε‐caprolactone), have been successfully synthesized by using the IDPA catalysis system. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1009–1019  相似文献   

6.
Ring-opening polymerization of trimethylene carbonate (TMC) with a rare earth calixarene compound as catalysthas been studied for the first time. The effect of TMC/Nd (molar ratio) and polymerization conditions were investigated indetail. It was found that calix[8]arene-neodymium is a highly effective catalyst for the bulk polymerization of TMC and giveshigh molecular weight (M_v = 60,000) polymer. The optimum conditions of TMC polymerization were found to be asfollows:TMC/Nd (molar ratio) = 2,000, 80℃, 16 h. The polymers were characterized by NMR, GPC and DSC. Studying themechanism by NMR showed that the polymerization of TMC catalyzed by calix[8]arene-neodymium proceeds via a cationicmechanism.  相似文献   

7.
AB‐type block copolymers with poly(trimethylene carbonate) [poly(TMC); A] and poly(ethylene oxide) [PEO; B; number‐average molecular weight (Mn) = 5000] blocks [poly(TMC)‐b‐PEO] were synthesized via the ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of monohydroxy PEO with stannous octoate as a catalyst. Mn of the resulting copolymers increased with increasing TMC content in the feed at a constant molar ratio of the monomer to the catalyst (monomer/catalyst = 125). The thermal properties of the AB diblock copolymers were investigated with differential scanning calorimetry. The melting temperature of the PEO blocks was lower than that of the homopolymer, and the crystallinity of the PEO block decreased as the length of the poly(TMC) blocks increased. The glass‐transition temperature of the poly(TMC) blocks was dependent on the diblock copolymer composition upon first heating. The static contact angle decreased sharply with increasing PEO content in the diblock copolymers. Compared with poly(TMC), poly(TMC)‐b‐PEO had a higher Young's modulus and lower elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4819–4827, 2005  相似文献   

8.
We describe herein an original approach for the efficient immortal ring‐opening polymerization (iROP) of trimethylene carbonate (TMC) under mild conditions using dual‐catalyst systems combining a discrete cationic metal complex with a tertiary amine. A series of new zinc and magnesium cationic complexes of the type [{NNO}M]+[anion]? ({NNO}?=2,4‐di‐tert‐butyl‐6‐{[(2′‐dimethylaminoethyl)methylamino]methyl}phenolate; M=Zn, [anion]?=[B(C6F5)4]? ( 2 ), [H2N‐ {B(C6F5)3}2]? ( 3 ), and [EtB(C6F5)3]? ( 4 ); M=Mg, [anion]?=[H2N{B(C6F5)3}2]? ( 7 )) have been prepared from the corresponding neutral compounds [{NNO}ZnEt] ( 1 ) and [{NNO}‐ Mg(nBu)] ( 6 ). Compounds 2 – 4 and 7 exist as free ion pairs, as revealed by 1H, 13C, 19F, and 11B NMR spectroscopy in THF solution, and an X‐ray crystallographic analysis of the bis(THF) adduct of compound 7 , 7? (THF)2. The neutral complexes 1 and 6 , in combination with one equivalent or an excess of benzyl alcohol (BnOH), initiate the rapid iROP of TMC, in bulk or in toluene solution, at 45–60 °C (turnover frequency, TOF, up to 25–30 000 mol(TMC)?mol(Zn)?h?1 for 1 and 220–240 000 mol(TMC)?mol(Mg)?h?1 for 6 ), to afford H‐PTMC‐OBn with controlled macromolecular features. ROP reactions mediated by the cationic systems 2 /BnOH and 7 /BnOH proceeded much more slowly (TOF up to 500 and 3 000 mol(TMC)?mol(Zn or Mg)?h?1 at 110 °C) than those based on the parent neutral compounds 1 /BnOH and 6 /BnOH, respectively. Use of original dual organic/organometallic catalyst systems, obtained by adding 0.2–5 equiv of a tertiary amine such as NEt3 to zinc cationic complexes [{NNO}Zn]+[anion]? ( 2 – 4 ), promoted high activities (TOF up to 18 300 mol(TMC)?mol(Zn)?h?1 at 45 °C) giving H‐PTMC‐OBn with good control over the Mn and Mw/Mn values. Variation of the nature of the anion in 2 – 4 did not significantly affect the performance of these catalyst systems. On the other hand, the dual magnesium‐based catalyst system 7 /NEt3 proved to be poorly effective.  相似文献   

9.
以丝氨醇、 4-碘苯甲酰氯和氯甲酸乙酯为原料, 通过酰胺化和分子内关环两步反应合成了一种新型的碘代环碳酸酯功能单体——4-碘-N-(2-氧代-1,3-二噁烷-5-基)苯甲酰胺(IBTMC). 以异戊醇为引发剂, 1,5,7-三叠氮双环(4.4.0)癸-5-烯(TBD)为催化剂, 使IBTMC与三亚甲基碳酸酯(TMC)进行开环共聚, 合成了一系列具有X射线不透过性的碘代聚碳酸酯材料, 并采用核磁共振氢谱( 1H NMR)、 凝胶渗透色谱(GPC)、 差示扫描量热仪(DSC)、 热重分析(TGA)和X射线计算机断层成像系统(Micro-CT)表征了其化学结构与组成、 分子量与分子量分布、 热力学性能及X射线不透过性. 研究结果表明, 本文合成的碘代聚碳酸酯具有较窄的分子量分布、 良好的热稳定性及可调的X射线不透过性. 小鼠体内埋置实验结果表明, 碘代聚碳酸酯具备体内X射线成像的能力.  相似文献   

10.
Several new heteroleptic Sn(II) complexes supported by amino-ether phenolate ligands [Sn{LO(n)}(Nu)] (LO(1)=2-[(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)methyl]-4,6-di-tert-butylphenolate, Nu=NMe(2) (1), N(SiMe(3))(2) (3), OSiPh(3) (6); LO(2)=2,4-di-tert-butyl-6-(morpholinomethyl)phenolate, Nu=N(SiMe(3))(2) (7), OSiPh(3) (8)) and the homoleptic Sn{LO(1)}(2) (2) have been synthesized. The alkoxy derivatives [Sn{LO(1)}(OR)] (OR=OiPr (4), (S)-OCH(CH(3))CO(2)iPr (5)), which were generated by alcoholysis of the parent amido precursor, were stable in solution but could not be isolated. [Sn{LO(1)}](+)[H(2)N{B(C(6)F(5))(3)}(2)](-) (9), a rare well-defined, solvent-free tin cation, was prepared in high yield. The X-ray crystal structures of compounds 3, 6, and 8 were elucidated, and compounds 3, 6, 8, and 9 were further characterized by (119)Sn M?ssbauer spectroscopy. In the presence of iPrOH, compounds 1-5, 7, and 9 catalyzed the well-controlled, immortal ring-opening polymerization (iROP) of L-lactide (L-LA) with high activities (ca. 150-550 mol(L-LA) mol(Sn)(-1) h(-1)) for tin(II) complexes. The cationic compound 9 required a higher temperature (100 °C) than the neutral species (60 °C); monodisperse poly(L-LA)s were obtained in all cases. The activities of the heteroleptic pre-catalysts 1, 3, and 7 were virtually independent of the nature of the ancillary ligand, and, most strikingly, the homoleptic complex 2 was equally competent as a pre-catalyst. Polymerization of trimethylene carbonate (TMC) occurs much more slowly, and not at all in the presence of LA; therefore, the generation of PLA-PTMC copolymers is only possible if TMC is polymerized first. Mechanistic studies based on (1)H and (119)Sn{(1)H} NMR spectroscopy showed that the addition of an excess of iPrOH to compound 3 yielded a mixture of compound 4, compound [Sn(OiPr)(2)](n) 10, and free {LO(1)}H in a dynamic temperature-dependent and concentration-dependent equilibrium. Upon further addition of L-LA, two active species were detected, [Sn{LO(1)}(OPLLA)] (12) and [Sn(OPLLA)(2)] (14), which were also in fast equilibrium. Based on assignment of the (119)Sn{(1)H} NMR spectrum, all of the species present in the ROP reaction were identified; starting from either the heteroleptic (1, 3, 7) or homoleptic (2) pre-catalysts, both types of pre-catalysts yielded the same active species. The catalytic inactivity of the siloxy derivative 6 confirmed that ROP catalysts of the type 1-5 could not operate according to an activated-monomer mechanism. These mechanistic studies removed a number of ambiguities regarding the mechanism of the (i)ROPs of L-LA and TMC promoted by industrially relevant homoleptic or heteroleptic Sn(II) species.  相似文献   

11.
Basic organocatalysts of the guanidine (1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene, TBD), amidine (1,8‐diazabicyclo[5.4.0]‐undec‐7‐ene, DBU), and phosphazene (2‐tert‐butylimino‐2‐diethylamino‐1,3‐dimethylperhydro‐1,3,2diazaphosphorine, BEMP) type do effectively polymerize β‐butyrolactone (BL). Poly(3‐hydroxybutyrate)s (PHBs) with controlled molecular features, that is, controlled molar masses, narrow molar mass distributions, and well‐defined functional end groups are thus formed at 60 °C from bulk monomer, with up to 21 500 g mol−1. The formation of α,ω‐guanidine/amidine/phosphazene,crotonate functionalized PHBs, as demonstrated by NMR, SEC, and MALDI–ToF mass spectrometry analyses, mechanistically suggests the formation of N‐acyl‐α,β‐unsaturated propagating species that originate from 1:1 guanidine/amidine/phosphazene:BL adducts.  相似文献   

12.

High-molecular-weight polymers with different contents of propylene carbonate (PC), and trimethylene carbonate (TMC) units in the polymer chain were synthesized by the coordination anionic copolymerization of carbon dioxide, propylene oxide (PO), and TMC in supercritical carbon dioxide (scCO2). Zinc adipate (ZnAd) was used as a catalyst. The terpolymerization products were characterized by 1H and 13C NMR, IR spectroscopy, GPC, and DSC. The effect of the reaction conditions on the yield, composition, structure, and molecular weight and thermal characteristics of the terpolymers was studied. The phase behavior of the synthesized polymers and mixtures of polypropylene carbonate with polytrimethylene carbonate was examined.

  相似文献   

13.
The polymerization kinetics of 5‐[2‐{2‐(2‐methoxyethoxy)ethyoxy}‐ethoxymethyl]‐5‐methyl‐trimethylene carbonate (TMCM‐MOE3OM) synthesized using the organocatalyst 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) were studied and compared to those with the commonly used catalyst/initiator for ring‐opening polymerization of cyclic carbonates and esters, stannous 2‐ethylhexanoate. Further, the utility of each of these catalysts in the copolymerization of TMCM‐MOE3OM with trimethylene carbonate (TMC) and l ‐lactide (LLA) was examined. Regardless of conditions with either catalyst, homopolymerization of TMCM‐MOE3OM yielded oligomers, having number average molecular weight less than 4000 Da. The resultant molecular weight was limited by ring‐chain equilibrium as well as through monomer autopolymerization. Interestingly, autopolymerization of TMC was also achieved with DBU as the catalyst. Copolymerization with TMC using stannous 2‐ethylhexanoate as the catalyst yielded random copolymers, while diblock copolymers were formed by copolymerization with LLA. With DBU as the catalyst, copolymers with LLA could not be formed, while blocky copolymers were formed with TMC. These findings should be useful in the incorporation of this monomer in the design of polymer biomaterials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 544–552  相似文献   

14.
Poly(trimethylene carbonate) (PTMC) was synthesized through ring-opening polymerization by using a rare-earth borohydride initiator, [Sm(BH(4))(3)(thf)(3)]. This initiator shows a high activity to give high-molar-mass PTMCs with molar-mass distributions ranging from 1.2 to 1.4, and with a regular structure void of ether linkages. The polymers were characterized by (1)H and (13)C NMR spectroscopy, (1)H-(1)H COSY, (1)H-(13)C HMQC NMR spectroscopy, size-exclusion chromatography (SEC), viscosimetry, and MALDI-TOF MS analyses. A coordination-insertion mechanism was established based on detailed NMR characterizations, especially of the polymer chain end-functions. The monomer initially coordinates the samarium to give [Sm(BH(4))(3)(tmc)(3)], 1. The monomer then opens up through cleavage of the cyclic ester oxygen--acyl bond and inserts into the Sm--HBH(3) bond resulting in an alkoxide complex, [Sm{O(CH(2))(3)OC(O)HBH(3)}(3)], 2, or [Sm{O(CH(2))(3)OC(O)H}(3)], 2', which then propagates the polymerization of TMC to give the active polymer [Sm({O(CH(2))(3)OC(O)}(n)O(CH(2))(3)OC(O)HBH(3))(3)], 3 or [Sm(O(CH(2))(3)OC(O){O(CH(2))(3)OC(O)}(n)O(CH(2))(3)OC(O)H)(3)], 3'. Finally, acidic hydrolysis of 3 or 3' gives HO(CH(2))(3)OC(O)[O(CH(2))(3)OC(O)](n)O(CH(2))(3)OC(O)H, 4. This novel alpha-hydroxy,omega-formatetelechelic PTMC represents the first example of a formate-terminated polycarbonate. TMC and epsilon-caprolactone (CL) were copolymerized to afford both random PTMC-co-PCL and block PTMC-b-PCL copolymers that were characterized by (1)H NMR spectroscopy, SEC, and differential scanning calorimetry (DSC). The structure of the block copolymers depends on the order of addition of monomers: if CL is introduced first, dihydroxytelechelic HO-PTMC-b-PCL-OH polymers are formed, whereas introduction of TMC first or simultaneous addition of comonomers leads to hydroxyformatetelechelic HC(O)O-PTMC-b-PCL-OH analogues.  相似文献   

15.
Ester free poly(trimethylene carbonate) (PTMC) derivatives show biocompatibility and biodegradability and do not generate any acidic compounds after decomposition. Their syntheses methods are limited however, hampering their material application. Herein, we established a novel synthesis route of ester free trimethylene carbonate (TMC) derivatives. The novel synthesis route was described using six aldehydes and one ketone as starting compounds. The key reaction is the selective deprotection from two protected hydroxyl groups in the cyclic acetal structure by diisobutylaluminium hydride. This novel synthesis route means that it is possible to convert aldehyde group to ether groups in the side chain of TMC. Conventionally, only a substituent derived from a primary alcohol was introduced into the side chain. We therefore succeeded in decreasing the number of reaction steps from five to three, compared with the conventional route. Furthermore, the development of a novel synthesis route enabled the introduction of substituents derived from secondary alcohols, anticipating the creation of further types of ester free TMC derivatives.  相似文献   

16.
The polycarbonate copolymer poly(trimethylene carbonate-co-5,5-dimethyl trimethylene carbonate) (P(TMC-co-DTC)) was synthesized by the polymerization of trimethylene carbonate (TMC) and 5,5-dimethyl trimethylene carbonate (DTC) using tin (II) 2-ethylhexanoate [Sn(Oct)(2)] as a catalyst. In vitro degradation tests indicated this polycarbonate copolymer degraded slowly in phosphate buffer saline solution (PBS, 0.1 mol/L, at 37°C). Magnetic polymer microspheres (MMC-PC-M) generated from the P(TMC-co-DTC) copolymer and containing Fe(3)O(4) magnetic ultrafine powders and an anticancer drug, mitomycin C (MMC) were prepared by a solvent evaporation technique. These anticancer magnetic polycarbonate microspheres showed strong magnetic responsiveness and high MMC loading capacity. In vitro drug release studies indicated that these microspheres sustained steady release rates of MMC in PBS. In vitro cytotoxicity assays demonstrated the microspheres were strongly inhibitory to human hepatic carcinoma (Bel-7204) cells. In vivo site-specific therapy in nude mice with human hepatic carcinoma indicated that the microspheres possessed markedly high antitumor activity against human hepatic carcinoma (Bel-7204).  相似文献   

17.
The reactions of the N-heterocyclic carbene 1,3-dimesitylimidazol-2-ylidene (IMes) with Ga[GaCl(4)], "GaI", InCl(2) and GaBr(3) have been examined. All reactions using a low valent gallium or indium starting material led to species of the form [{MX(2)(IMes)}(2)], where M = Ga, X = Cl (1), I (2); M = In, X = Cl (3), with disproportionation and loss of gallium metal in the case of 2. Reaction of IMes with gallium tribromide yields the air and moisture stable complex [GaBr(3)(IMes)] (4), which has been used as a precursor to the mixed bromohydrides [GaBrH(2)(IMes)] (5) and [GaBr(2)H(IMes)] (6) by (i) ligand redistribution with [GaH(3)(IMes)], (ii) hydride-bromide exchange with triethylsilane, and (iii) alkylation with (n)butyllithium followed by β-hydride elimination (6 only). Attempts to prepare 1, or monovalent analogues such as [{GaCl(IMes)}(n)], by thermally induced reductive elimination of dihydrogen from the chlorohydride congeners of 5 and 6 resulted in isolation of the known compounds [IMesCl][Cl] (IMesCl = 1,3-dimesityl-2-chloroimidazolium), and/or 1,3-dimesityl-2-dihydroimidazole, and gallium metal. Preliminary photochemical NMR spectroscopy and catalytic studies of 5 and 6 aimed at reductive dehydrogenation under milder conditions are reported. Compounds 1 and 4 have been characterised by single crystal X-ray structure determination.  相似文献   

18.
生物降解聚合物聚三亚甲基环碳酸酯(PTMC)及聚2,2-二甲基三亚甲基环碳酸酯(PDTC)在药物控释载体及其它生物医学技术领域有着良好的应用前景。与脂肪族聚酯不同,PTMC、PDTC降解时,不会产生有害的酸性化合物。PTMC、PDTC主要由三亚甲基环碳酸酯(TMC)及2,2-二甲基三亚甲基环碳酸酯(DTC)开环均聚合制备。本文总结了催化TMC、DTC开环均聚合的不同催化剂及其聚合机理,综述了近年来国内外在TMC、DTC均聚合催化剂开发上的研究进展,并对生物相容性催化剂如稀土催化剂、Ca、Mg、Zn、Fe催化剂以及酶催化剂催化TMC、DTC开环聚合的优缺点进行了比较。  相似文献   

19.
Main-chain biodegradable liquid crystal derived from cholesteryl derivative end-capped poly(trimethylene carbonate) was investigated. The novel liquid crystal was synthesised via ring-opening polymerisation of trimethylene carbonate initiated by cholesteryl derivative with an alkyl spacer and end primary hydroxyl group, without any catalyst. The chemical structure of resulting polymers was verified by 1H NMR. Liquid crystalline properties were validated by X-ray diffraction, differential scanning calorimetry, and polarising optical microscopy. The results showed that all the synthesised polymers Chol-(CH2)2-(TMC)n exhibited mesomorphism in particular temperature ranges because of the introduction of the cholesteryl derivative moiety.  相似文献   

20.
Methyl trioctylphosphonium methyl carbonate [P(8881)](+)[MeOCO(2)](-) was prepared by the alkylation of trioctyl phosphine with the non-toxic dimethyl carbonate. This salt was a convenient source to synthesize different ionic liquids where the methyl trioctylphosphonium cation was coupled to weakly basic anions such as bicarbonate, acetate, and phenolate. At 90-220 °C, all these compounds [P(8881)](+)X(-); X = MeOCO(2); HOCO(2); AcO; PhO were excellent organocatalysts for the transesterification of dimethyl and diethyl carbonate with primary and secondary alcohols, including benzyl alcohol, cyclopentanol, cyclohexanol, and the rather sterically hindered menthol. Conditions were optimized to operate with very low catalyst loadings up to 1 mol% and to obtain non-symmetric dialkyl carbonates (ROCO(2)R'; R = Me, Et) with selectivity up to 99% and isolated yields >90%. The catalytic performance of the investigated ionic liquids was discussed through a cooperative mechanism of simultaneous activation of both electrophilic and nucleophilic reactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号