首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive square‐wave voltammetry method was developed to determine cholecalciferol (vitamin D3) in pharmaceutical products at boron‐doped diamond electrode as a working electrode. Vitamin D3 provided a well‐defined voltammetric peak at around +1.00 V (vs. Ag/AgCl, 3.5 mol dm?3) in 0.02 mol dm?3 Britton‐Robinson buffer pH 5.0 prepared in 50 % ethanol. The influence of various factors such as type and pH of the supporting electrolyte, scan rate and square‐wave parameters were studied and optimized. Under optimum conditions, the oxidation peak current increased linearly with the concentration of vitamin D3 over the range of 2 to 200 μmol dm?3. The calculated limit of detection and limit of quantitation were 0.17 μmol dm?3 and 0.51 μmol dm?3, respectively. The boron‐doped diamond electrode exhibited specific recognition capability for cholecalciferol amongst possible interferences, and the determination of vitamin D3 was possible in samples such as commercial pharmaceutical products without complicated sample pretreatments.  相似文献   

2.
Solid-contact Pb2+-selective electrodes (Pb2+-ISEs) were prepared by using polybenzopyrene doped with eriochrome black T as solid contact material and a conventional polyvinyl chloride membrane with lead ionophore IV as selective compound. Nernstian response down to 10?9?mol?dm?3 Pb2+ was obtained by careful control of the electrode conditioning process. Furthermore, the response at lowest concentrations was retained by exposing the solid-contact Pb2+-ISEs to a solution containing Na2EDTA. Finally, the solid-contact Pb2+-ISEs were used in the determination of lead in a synthetic sample (pPb2+?=?7.40). The analysis of the sample was done with direct potentiometry (pPb2+?=?7.64?±?0.11) and single standard addition method (pPb2+?=?7.27?±?0.07). These results were in good agreement with those obtained by inductively coupled plasma–mass spectrometry (pPb?=?7.34). The renewable response of the Pb2+-ISEs at low concentrations opens interesting possibilities when dealing with trace-level measurements of Pb2+.  相似文献   

3.
于浩  郑建斌 《中国化学》2007,25(4):503-509
A copper hexacyanoferrate modified ceramic carbon electrode (CuHCF/CCE) had been prepared by two-step sol-gel technique and characterized using electrochemical methods. The resulting modified electrode showed a pair of well-defined surface waves in the potential range of 0.40 to 1.0 V with the formal potential of 0.682 V (vs. SCE) in 0.050 mol·dm^-3 HOAc-NaOAc buffer containing 0.30 mol·dm^-3 KCl. The charge transfer coefficient (a) and charge transfer rate constant (ks) for the modified electrode were calculated. The electrocatalytic activity of this modified electrode to hydrazine was also investigated, and chronoamperometry was exploited to conveniently determine the diffusion coefficient (D) of hydrazine in solution and the catalytic rate constant (kcat). Finally, hydrazine was determined with amperometry using the resulting modified electrode. The calibration plot for hydrazine determination was linear in 3.0 × 10^-6--7.5 × 10^-4 mol·dm^-3 with the detection limit of 8.0 × 10^-7 molodm^-3. This modified electrode had some advantages over the modified film electrodes constructed by the conventional methods, such as renewable surface, good long-term stability, excellent catalytic activity and short response time to hydrazine.  相似文献   

4.
《Electroanalysis》2006,18(5):433-439
This paper presents the results of investigation on selectivity of the sulfur dioxide amperometric sensor with Nafion membrane in the presence of carbon monoxide and nitrogen dioxide as the interferents. There have been compared selectivity coefficients, for the sensors containing the following internal electrolytes: solution of sulfuric acid (concentration 5 mol dm?3) in pure water (A) and solution of sulfuric acid (concentration 5 mol dm?3) in mixed solvent dimethylsulfoxide‐water with an DMSO: H2O mole ratio of 1 : 2 (B). Values of the selectivity coefficients have been calculated based on the calibration curves. Analysis of both calibration curves and selectivity coefficients plays a significant role in optimization of a working point of a particular sensor. The investigated sensor operates in a three‐electrode system, where the working and counter electrodes are vacuum sublimation deposited on the membrane surface.  相似文献   

5.
Conductometric studies on the complexation properties of two newly synthesized lariat ethers viz 1,5‐di(cyanoethane)‐2,4 : 7,8 : 13,14‐tribenzo‐1,5‐diaza‐9,12‐dioxacyclopentadeca‐2,7,13‐triene (L1) and 1,5‐di(cyanoethane)‐2,3,4‐pyridine‐7,8 : 13,14‐dibenzo‐1,3,5‐triaza‐9,12‐dioxa cyclopentadeca‐2,7,13‐triene (L2) towards various metal ions in acetonitrile solutions revealed the formation of 1 : 1 ligand metal complexation. These compounds were explored as neutral ionophores for the fabrication of Nd3+ selective and sensitive membrane coated graphite electrodes (CGEs). Among all the electrodes prepared, CGEs with membrane composition L1(5%) : NaTPB(3%) : NPOE (57%) : PVC (35%) and L2(5%) : NaTPB(3%) : NPOE (53%) : PVC (39%) showed best performance. Both the electrodes showed Nernstian response towards Nd3+ ions over a wide concentration range with detection limits 3.8×10?8 mol L?1 and 1.6×10?8 mol L?1 respectively. These electrodes showed a fast response time of <15 s and could be used over a period of three months without significant divergence in their characteristics. The proposed electrodes revealed very good selectivity for Nd3+ ions over several ions. However, higher concentration of Co2+, La3+, Pr3+ and Yb3+ caused some interference. The potentiometric response of these electrodes was excellent in the range of pH 3.5 to 7.6 and they could tolerate up to 20% (v/v) nonaqueous media in the test solutions. These electrodes were used successfully as indicator electrode in the potentiometric titration of Nd3+ against EDTA and also in the quantitative determination of Nd3+ ions from binary mixtures and water samples.  相似文献   

6.
The kinetic model of induced codeposition of nickel-molybdenum alloys from ammoniun citrate solution was studied on rotating disk electrodes to predict the behavior of the electrode-position. The molybdate (MoO42-) could be firstly electro-chemically reduced to MoO2, and subsequently undergoes a chemical reduction with atomic hydrogen previously adsorbed on the inducing metal nickel to form molybdenum in alloys. The kinetic equations were derived, and the kinetic parameters were obtained from a comparison of experimental results and the kinetic equations. The electrochemical rate constants for discharge of nickel, molybdenum and water could been expressed as k1(E) = 1. 23 × 109 CNi exp( - 0.198FE/RT) mol/(dm2·s), k2(E) =3.28× 10-10 CMoexp( - 0. 208FE/ RT) mol/(dm2·s) and k3(E) = 1.27 × 10-6exp( - 0.062FE/ RT) mol/(dm2 · s), where CNi and CMo are the concentrations of the nickel ion and molybdate, respectively, and E is the applied potential vs. saturated calomel electrode (SCE). The codeposition p  相似文献   

7.
The adsorption of Cl ions on rhodium black layer (rhodized electrodes) was studied by radiotracer technique at low Cl ion concentrations (c10–5 mol dm–3) in 1 mol dm–3 H2SO4 supporting electrolyte. The specific adsorption of Cl ions was treated in terms of partition between solution phase and electrodeposited Rh black layer. The potential dependence of the partition coefficient is determined.  相似文献   

8.
《Electroanalysis》2006,18(2):158-162
Optimum conditions have been found for voltammetric determination of mutagenic 5‐aminoquinoline, 6‐aminoquinoline and 3‐aminoquinoline by differential pulse voltammetry and adsorptive stripping differential pulse voltammetry on carbon paste electrode. The lowest limits of determination were found for adsorptive stripping differential pulse voltammetry in 0.1 mol dm?3 H3PO4 (5×10?7 mol dm?3 , 1×10?7 mol dm?3, and 1×10?7 mol dm?3 for 5‐aminoquinoline, 6‐aminoquinoline and 3‐aminoquinoline, respectively). The possibility to determine mixtures of 8‐aminoquinoline with 3‐aminoquinoline or 5‐aminoquinoline or 6‐aminoquinoline, and mixtures of 5‐aminoquinoline with 3‐aminoquinoline or 6‐aminoquinoline by differential pulse voltammetry was verified. Binary mixtures of 8‐aminoquinoline with 3‐aminoquinoline or 6‐aminoquinoline, and of 3‐aminoquinoline with 5‐aminoquinoline could be successfully analyzed.  相似文献   

9.
《Electroanalysis》2003,15(2):97-102
The oxidation of dimethyl sulfoxide (DMSO) to dimethyl sulfone (DMSO2) is representative of numerous anodic oxygen‐transfer reactions of organosulfur compounds that suffer from slow kinetics at noble metal electrodes. Anodic voltammetric data for DMSO are examined at various RuO2‐film electrodes prepared by thermal deposition on titanium substrates. The response for DMSO is slightly larger at RuO2 films prepared in a flame as compared with films prepared in a furnace; however, temperature is more easily controlled in the furnace. Doping of the RuO2 films with Fe(III) further improves the sensitivity of anodic response for DMSO. Optimal response is obtained at an Fe(III)‐doped RuO2‐film electrode prepared using a deposition solution of 50 mM RuCl3 and 10 mM FeCl3 in a 1 : 1 mixture of isopropanol and 12 M HCl at an annealing temperature of 450 °C. The Levich plot (i vs. ω1/2) and Koutecky‐Levich plot (1/i vs. 1/ω1/2) of amperometric data for the oxidation of DMSO at an Fe(III)‐doped RuO2‐film electrode configured as a rotated disk are consistent with an anodic response controlled by mass‐transport processes at low rotational velocities. Flow injection data demonstrate that Fe(III)‐doped RuO2‐film electrodes exhibit detection capability for methionine and cysteine in addition to DMSO. Detection limits for 100‐μL injections of the three compounds are ca. 3.2×10?4 mM, i.e., ca. 32 pmol.  相似文献   

10.
A sol‐gel electrode, based on thiacalix[4]arene as a neutral carrier, was successfully developed for the detection of VO2+ in aqueous solutions. The sol‐gel electrode exhibited linear response with Nernstian slope of 29.3±0.3 mV per decade, within the vanadyl ion concentration ranges 1.0×10?6 – 1.0×10?1 mol dm?3. The sol‐gel electrode shows detection limit of 4.9×10?7 mol dm?3. The influence of membrane composition, the pH of the test solution, and the interfering ions on the electrode performance were investigated. The electrode exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The effect of temperature on the electrode response showed that the temperature higher than 60 °C deteriorates the electrode performance. Application of the electrode for the determination of vanadyl in spiked samples is reported.  相似文献   

11.
Several quaternary phosphonium salts have been used as the site materials for construction of carbonate ion electrodes. Among them the electrode based on hexadecyltriphenylphosphonium salt showed best performance characteristics. The Nerstian response range of the electrode is from 1 × 10?2 down to 6.3 × 10?7 mol · dm?3 with a detection limit of 1.8 × 10?7 mol · dm3. The selectivity order of ions can be altered by the introduction of trifluoroacetyl-tert-butylbenzene as a solvent mediator. The strong solvatoin of the primary ion of interest in the membrane phase by the solvent mediator favors the improvement of the selectivity of the proposed electrode.  相似文献   

12.
In this study the application of home-made unmodified (GC) and bulk modified boron doped glassy carbon (GCB) electrodes for the voltammetric determination of the linuron was investigated. The electrodes were synthesized with a moderate temperature treatment (1000°C). Obtained results were compared with the electrochemical determination of the linuron using a commercial glassy carbon electrode (GC-Metrohm). The peak potential (E p ) of linuron oxidation in 0.1 mol dm−3 H2SO4 as electrolyte was similar for all applied electrodes: 1.31, 1.34 and 1.28 V for GCB, GC and GC-Metrohm electrodes, respectively. Potential of linuron oxidation and current density depend on the pH of supporting electrolyte. Applying GCB and GC-Metrohm electrodes the most intensive electrochemical response for linuron was obtained in strongly acidic solution (0.1 mol dm−3 H2SO4). Applying the boron doped glassy carbon electrode the broadest linear range (0.005–0.1 μmol cm−3) for the linuron determination was obtained. The results of voltammetric determination of the linuron in spiked water samples showed good correlation between added and found amounts of linuron and also are in good agreement with the results obtained by HPLC-UV method. This appears to be the first application of a boron doped glassy carbon electrode for voltammetric determination of the environmental important compounds.   相似文献   

13.
利用电化学聚合法将铬黑T修饰到玻碳电极表面,制得聚铬黑T修饰电极。该修饰电极对亚硝酸盐的电化学氧化具有明显的催化作用,这种催化作用主要是由于聚铬黑T薄膜与带负电荷的亚硝酸盐离子的静电相互作用,导致亚硝酸盐离子富集在电极表面/溶液界面,显著增强了亚硝酸盐的氧化电流。电子传输系数α为0.735。选用0.85V作为工作电压,对亚硝酸盐进行安培检测,在0.05μmol/L~1.0 mmol/L和1.0~20.0 mmol/L两个浓度范围内呈现良好的线性关系,检测限达到0.01μmol/L。且该修饰电极有良好的重现性和稳定性。将该修饰电极用于泡菜中亚硝酸盐的测定,获得了满意的结果。  相似文献   

14.
《Electroanalysis》2003,15(17):1403-1409
The effect of F? on the modified films of lead dioxide in morphology and structure was studied. The results obtained by cyclic voltammetry (CV), X‐diffractometer (XRD) and scanning electron microscope (SEM) techniques indicated that F? could change the magnitude of lead dioxide crystal grain and the preferred crystallizing orientation on the substrate surface, even though it didn't change the basic structure of PbO2. When the modified electrode was applied as an analytical sensor to determine phenolic compounds, the linearity was in the range of 2×10?5 – 1×10?3 mol/L and the detection limit was 2.5×10?6 mol/L. It was all found that the stability and reproducibility of the oxide‐modified electrodes were improved by additional F?.  相似文献   

15.
《Electroanalysis》2005,17(17):1517-1522
In this paper, we report the first attempt to use humic acid (HA) as modifiers to prepare the organic‐inorganic hybrid modified glassy carbon electrodes based on HA‐silica‐PVA (poly(vinyl alcohol)) sol‐gel composite. Electroactive species of tris(2,2′‐bipyridyl)ruthenium(II) (Ru(bpy) ) can easily incorporate into the HA‐silica‐PVA films to form Ru(bpy) modified electrodes. The amount of Ru(bpy) incorporated in the composite films strongly depends on the amount of HA in the hybrid sol. Electrochemical and electrogenerated chemiluminescence (ECL) of Ru(bpy) immobilized in HA‐silica composite films coated on a glassy carbon electrode have been studied with tripropylamine (TPA) as the coreactant. The analytical performance of this modified electrode was evaluated in a flow injection analysis (FIA) system with a homemade flow cell. The as‐prepared electrode showed good stability and high sensitivity. The detection limits (S/N=3) were 0.050 μmol L?1 for TPA and 0.20 μmol L?1 for oxalate, and the linear ranges were from 0.10 μmol L?1 to 1.0 mmol L?1 for TPA and from 1.0 μmol L?1 to 1.0 mmol L?1 for oxalate, respectively. The resulting electrodes were stable over two months.  相似文献   

16.
The dependence of the limiting catalytic current in the system of In(III)-acetylsalycilic acid on the concentration of indium ions and the ligand anions was described theoretically. Dissociation and protonation constants of acetylsalycilic acid molecular form and kinetic parameter connected with the rate constant of formation of polarographically active complex {K a = 3.59×10?3, mol dm?3; K H = 0.12 mol dm?3; k = 4.0×102, A (mol/dm?3)2} were calculated.  相似文献   

17.
Poly(vinyl chloride)‐based membranes of salen ligands, 2‐((E)‐((1R,2S)‐2‐((E)‐5‐tert‐butyl‐2‐hydroxybenzylideneamino)cyclohexylimino)methyl)‐4‐tert‐butyl phenol (S1) and 2‐((E)‐((1R,2S)‐2‐((E)‐3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)cyclohexylimino)methyl)‐4,6‐di‐tert‐butylphenol (S2) were fabricated and explored as cobalt(II) selective electrodes. The performance of the polymeric membrane electrode (PME) and coated graphite electrode (CGE) were compared and it was observed that CGE showed a wide working concentration range of 1.1×10?8 to 1.0×10?1 mol L?1 with a limit of detection of 7.0×10?9 mol L?1 exhibiting the Nernstian slope 29.6 mV/decade of activity in the pH range 3.0–9.0. It was used for the determination of cobalt(II) ions in water, soil, beer, pharmaceutical samples and medicinal plants and would be used as an indicator electrode in potentiometric titration with EDTA.  相似文献   

18.
《Electroanalysis》2004,16(24):2065-2072
The interaction between Cu(II) and pectin extracted from citrus fruit was studied in KNO3 0.10 mol dm?3 at 25 °C and pH 5.5, using ion selective electrode potentiometry and voltammetry, namely differential pulse polarography and square‐wave voltammetry. Although many independent variables may affect Cu(II)‐polymer interactions such as charge density, polymer concentration and copper to polymer concentration ratio, a good fitting was observed for the model with ML and ML2 complex species, when M:L total concentration (mol dm?3) ratio varies from 0.2 to 2.7 and the ligand concentration is in the range (0.2 to 1) g dm?3, i.e., (0.4 to 2)×10?3 mol COO? dm?3. The complex parameters found in these conditions were log βCuL=3.5±0.1 and log βCuL2= 8.0±0.2. For lower total ligand and total metal ion concentrations, used in voltammetry, the interaction Cu(II)‐pectin is affected by a cooperative mode (increase of metal ion‐ligand affinity) when the total metal ion concentration increases and by an anti‐cooperative mode when the total ligand concentration increases, possibly due to different conformations of the polymer.  相似文献   

19.
Accumulation of electroactive anions into a silicate film with covalently bonded room temperature ionic liquid film deposited on an indium tin oxide electrode was studied and compared with an electrode modified with an unconfined room temperature ionic liquid. A thin film containing imidazolium cationic groups was obtained by sol‐gel processing of the ionic liquid precursor 1‐methyl‐3‐(3‐trimethoxysilylpropyl)imidazolium bis(trifluoromethylsulfonyl)imide together with tetramethylorthosilicate on the electrode surface. Profilometry shows that the obtained film is not smooth and its approximate thickness is above 1 μm. It is to some extent permeable for a neutral redox probe – 1,1′‐ferrocene dimethanol. However, it acts as a sponge for electroactive ions like Fe(CN)63?, Fe(CN)64? and IrCl63?. This effect can be traced by cyclic voltammetry down to a concentration equal to 10?7 mol dm?3. Some accumulation of the redox active ions also occurs at the electrode modified with the ionic liquid precursor, but the voltammetric signal is significantly smaller compare with the bare electrode. The electrochemical oxidation of the redox liquid t‐butyloferrocene deposited on silicate confined ionic liquid film is followed by the expulsion of the electrogenerated cation into an aqueous solution. On the other hand, the voltammetry obtained with the electrode modified with t‐butyloferrocene solution in the ionic liquid precursor exhibits anion sensitive voltammetry. This is explained by anion insertion into the unconfined ionic liquid deposit following t‐butylferricinium cation formation.  相似文献   

20.
Prussian blue (PB) modified titanate nanotubes (PB‐TiNT) have been synthesized by the reaction of Fe2+‐modified TiNT with hexacyanoferrate(III) ions. The rate constant for heterogeneous catalytic reaction between PB‐TiNT and H2O2 was found to be k=2×104 dm3 mol?1 s?1, which is an order of magnitude higher than the values of k reported for conventionally prepared, electrochemically deposited PB films. On the PB‐TiNT modified electrode with subnanomolar surface concentration of PB (Γ(PB)=2.8×10?11 mol/cm2), a stable, reproducible and linear response towards H2O2 was obtained in the concentration range 0.02–4 mM, with the sensitivity of 0.10 AM?1 cm?2 at ?150 mV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号