首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
将激光频率锁定于合适的参考频率,可以有效地抑制激光器的频率起伏。本文采用铷原子D2线超精细跃迁线的饱和吸收光谱和偏振光谱分别获得鉴频曲线,通过电子伺服系统将频率校正信号负反馈到780 nm光栅外腔反馈半导体激光器外腔的压电陶瓷上的方法对激光器进行稳频。介绍了两种方法的基本原理和实验方案。与激光器自由运转300s时激光器典型的频率起伏约6.6 MHz相比,采用饱和吸收光谱和偏振光谱进行稳频,运转300 s时激光器典型的残余频率起伏分别约为1.5 MHz和0.6 MHz。分析表明,饱和吸收光谱稳频采用了相敏检波技术,需要对激光器进行频率调制,带来了额外的频率噪声,而偏振光谱稳频则是一种完全无频率调制的稳频方案。  相似文献   

2.
We demonstrate novel modulation-free frequency locking of a diode laser, utilizing a simple Sagnac interferometer to create an error signal from saturated-absorption spectroscopy. The interference condition at the output of the Sagnac is strongly affected by the sharp dispersion feature near an atomic resonance. Slight misalignment of the interferometer and subsequent spatially selective, or tilt, detection allows this phase change to be converted into an error signal. Tilt locking has significant advantages over previously described methods, as it requires only a small number of low-cost optical components and a detector. In addition, the system has the potential to be constructed as a plug-and-play fiber-coupled monolithic device to provide submegahertz stability for lasers in the commercial market.  相似文献   

3.
A simple method based on Sagnac interferometric spectroscopy (SIS) is applied for frequency stabilization of diode lasers. Sagnac interferometric spectra of rubidium vapor are investigated both theoretically and experimentally. The interference signal at the output of the Sagnac interferometer displays a sharp dispersion feature near the atomic resonance. This dispersion curve is used as the feedback error signal to stabilize the laser frequency. Linewidth of a diode laser is stabilized down to 1 MHz by this modulation-free method.  相似文献   

4.
Wei F  Chen D  Fang Z  Cai H  Qu R 《Optics letters》2010,35(22):3853-3855
We propose a modulation-free technique for frequency stabilization of an external-cavity diode laser (ECDL) by using a phase-difference biased Sagnac interferometer to produce dispersion spectroscopic error signals. A half-wave plate and a total internal reflection prism are inserted into the loop to provide a phase-difference bias between the clockwise and counterclockwise beams with perpendicular polarizations, instead of the previous method with misaligned optical paths. In the experiments, the frequency of the Littman-Metcalf configuration ECDL is locked at the transition of the Rb atomic vapor, and the frequency fluctuation is suppressed from 8 to less than 0.5 MHz peak to peak. It is shown that this scheme is simple, robust, low cost, and it shows promise for use in a variety of related applications.  相似文献   

5.
通过铯原子D_1线超精细跃迁能级的偏振光谱获得鉴频曲线,利用电子伺服系统将鉴频曲线反馈到894.6nm外腔式半导体激光器的压电陶瓷上进行锁定。由于偏振光谱技术不需要对激光器进行调制,因此不会带来额外的噪声。激光器自由运转400s内频率起伏为2.35 MHz,采用偏振光谱锁定激光器后400s内频率起伏为0.95 MHz,有效抑制了激光器的频率起伏。  相似文献   

6.
Demonstration of a passive subpicostrain fiber strain sensor   总被引:1,自引:0,他引:1  
We demonstrate a fiber Fabry-Perot (FFP) sensor that is capable of detecting subpicostrain signals, from 100 Hz and extending beyond 100 kHz, using the Pound-Drever-Hall (PDH) frequency locking technique. A low-power diode laser at 1550 nm is locked to a free-space reference cavity to suppress its free-running frequency noise, thereby stabilizing the laser. The stabilized laser is then used to interrogate a FFP sensor whose PDH error signal yields the instantaneous fiber strain.  相似文献   

7.
A variant of the Hänsch–Couillaud technique for locking the pump laser frequency to a cavity-enhanced optical frequency doubler is presented. In contrast to the original scheme in which the pump laser light reflected by the enhancement cavity is monitored, the error signal for locking is obtained by polarization analysis of the light transmitted by the cavity. The cavity serves as a spectral and spatial filter for the pump beam, making the transmission-mode locking method particularly useful if the beam quality is poor. Experimental validation of the method is demonstrated by generating more than 190 mW of stable 461 nm light from a cavity-enhanced frequency doubler that is pumped by a diode laser system.  相似文献   

8.
Kim JI  Park CY  Yeom JY  Kim EB  Yoon TH 《Optics letters》2003,28(4):245-247
We have demonstrated in an ytterbium laser cooling and trapping experiment a high-power violet extendedcavity diode laser (ECDL) stabilized to the Yb resonant transition at 398.9 nm in an Yb hollow-cathode lamp. A frequency-dispersion signal, which we obtained by applying a modulation-free dichroic-atomic-vapor laser lock technique, allowed us to stabilize the violet ECDL at a frequency stability below 1 MHz at 1-s average time and a useful output power of 15 mW.  相似文献   

9.
张继涛  吴学健  李岩  尉昊赟 《物理学报》2012,61(10):100601-100601
提出一种利用光频梳和可调谐半导体激光器提高台阶高度测量准确度的方法. 通过将可调谐激光器锁定至光频梳,可对激光器的输出波长进行精确锁定与测量.基于可调合成波长链原理,利用锁定后的半导体激光器构建了一套台阶高度测量方案,该方案可消除合成波长误差对台阶高度测量不确定度的影响. 采用一台可调谐半导体激光器和光频梳进行了5000 s的连续锁定实验, 结果表明,锁定后的可调谐半导体激光器的频率稳定度达 1.8×10-12.该方法的理论测量不确定度约为7.9 nm, 且测量结果可溯源至时间频率基准.  相似文献   

10.
We demonstrate the excellent spectral properties of a diode laser setup that combines good tunability with superb short-term frequency stability and controllability. It is based on merging two concepts, the diode laser with resonant optical feedback and the grating stabilized diode laser. To characterize the short-term performance we beat two essentially identical diode lasers and find a short-term linewidth of ~11 kHz. Phase locking between these lasers is achieved with a servo bandwidth as small as 46 kHz, although an analog phase detector is used that requires subradian residual phase error. Despite small phase error detection range and small servo bandwidth, cycle-slip-free phase locking is accomplished for typically many 10 min, and the optical power is essentially contained in a spectral window of less than 20 mHz relative to the optical reference. Due to the excellent performance this laser concept is well suited for atomic or molecular coherence experiments, which require phase locking of different lasers to each other, and as part of a flywheel for optical clocks.  相似文献   

11.
A single-mode frequency stabilized laser with modulation-free and moderate power is desired as a light source for an ultra-high resolution interferometer system and/or a rapid laser calibration system. For this purpose, we developed a new stabilized laser system that utilizes intermittent control of a 2 mW transverse Zeeman stabilized He-Ne laser (Zeeman laser) with an iodine stabilized He-Ne laser (I2 stabilized laser). Because of the intermittent control, working time of the I2 stabilized laser is reduced. The Zeeman laser has two operational modes: independent and slave mode. In the independent mode, the Zeeman laser is stabilized through control of Zeeman beat frequency. Temperature dependent drift of the oscillation frequency during the independent mode is periodically corrected by the slave operation utilizing frequency offset locking to the I2 stabilized laser. Frequency instability of the Zeeman laser in independent and slave modes is 7.7X10-11 and 2.0X10-11, respectively, at the sampling time of 100 s.  相似文献   

12.
声光偏频亚多普勒光谱无调制激光频率锁定   总被引:9,自引:2,他引:7  
将激光器锁定到合适的参考频率标准上 ,可以有效地改善激光器的频率稳定性。采用两个声光调制器(AOM) ,使铯原子D2 线饱和吸收光谱分别发生Ω±Δ绝对频移 ;通过改变射频压控振荡器 (RFVCO)的Vf 端口直流电压调节相对频移间隔Δ ,当相对频率间隔选择合适时两信号相减得到了类色散型鉴频曲线。实验中实现了85 2nm光栅外腔半导体激光器相对于铯原子D2 线6S1/2 F =4 6P3 /2 F′ =5超精细跃迁线 (中心频率ν0 )的无调制偏频锁定 (锁定后中心频率ν0 +Ω ,偏频量为Ω)。由闭环锁定后的误差信号估计 ,5 0s内典型的频率起伏小于± 2 70kHz ,较相同时间段内激光器自由运转时的频率起伏 14MHz有显著的改善。该方法可避免对激光器直接进行频率调制的常规饱和吸收锁频方案所引入的额外频率噪声和强度噪声。  相似文献   

13.
将频率调制加在声光调制器上 ,用三次谐波探测法获得了铯原子D2 线的三阶微分饱和光谱。采用这种激光器无调制扰动方案结合三次谐波锁频技术 ,实现了 85 2nm的分布布拉格反射器半导体激光器相对于 6S1/2 F =4- 6P3 /2 F′ =5超精细跃线的频率锁定。由锁定后的频率误差信号估算 ,10s内激光频率起伏小于± 35 0kHz ,相对频率稳定度约 1× 10 -9。这种无调制扰动方案可以消除一般的饱和吸收稳频方法中由于直接对激光器进行频率调制而带来的额外频率噪声 ;三次谐波锁频技术的应用 ,还可有效地降低铯原子饱和吸收谱中剩余多普勒背景的影响  相似文献   

14.
Hyperfine optical pumping of a Cs-vapor cell through a diode laser in frequency standards requires a high purity of the laser emission spectrum, and a high stability of the emission frequency. We present here a frequency-locking scheme that is able to produce a discrimination signal without any modulation, by using the dichroism induced by a magnetic field on the atomic vapor. The larger line-width of the reference signal (Doppler-broadened) is compensated by its larger amplitude, when compared with the saturated absorption signal. As a final result, the slope is similar, and the large line-width warrants a large locking range, making robust the lock against external perturbations. This error signal is used to lock the frequency of an external cavity diode laser, with a grating reflector in Littman configuration. A fast correction band is obtained by changing the cavity length through an intra-cavity electro-optic modulator. The possible sources of instabilities of the locking point are discussed and estimated through a simulation computer program. Received: 28 November 2000 / Revised version: 21 May 2001 / Published online: 18 July 2001  相似文献   

15.
We analyze in detail the frequency noise properties of a grating enhanced external cavity diode laser (GEECDL). This system merges two diode laser concepts, the grating stabilized diode laser and the diode laser with resonant optical feedback, thus combining a large tuning range with an excellent short-term frequency stability. We compare the frequency noise spectrum of a GEECDL to that of a grating stabilized diode laser and demonstrate a 10-fold reduction of the frequency noise linear spectral density. The GEECDL is phase locked to a similar laser and to a fs-frequency comb with a servo loop providing an open-loop unity-gain frequency of only 237 kHz, which is a tenth of the bandwidth typically required for grating stabilized diode lasers. We achieve a residual rms phase error as small as 72 mrad (≈ 200 mrad) for stabilization to a similar laser (to the fs-frequency comb). We demonstrate that the novel diode laser can phase-coherently track a stable optical reference with an instability of 1.8×10-16 at 1 s. This laser system is well suited for applications that require phase locking to a low-power optical reference under noisy conditions. It may also be considered for the implementation of optical clock lasers. PACS 42.55.Px; 42.60.Jf; 42.50.Gy  相似文献   

16.
Rb原子饱和吸收稳频半导体激光器系统   总被引:12,自引:1,他引:11  
用饱和吸收光谱法对半导体激光器进行稳频,通过对反馈回路的优化设计,得到具有高信噪比的饱和吸收光谱微分误差信号,从而大大提高了半导体激光器的频率锁定灵敏度及长期稳定性,该中用于Rb原子的激光冷却与囚禁。  相似文献   

17.
We describe the design and performance of an injection-locked diode laser locked to a stabilized, single frequency, unmodulated diode laser. The master oscillator is a grating-tuned, external cavity diode laser which is stabilized on a Doppler free alkali metal resonance transition frequency via Zeeman locking. The master oscillator frequency is shifted by an acousto-optic modulator, which provides optical isolation of the master oscillator laser while tuning of the acousto-optic modulation frequency can also provide frequency offset tuning. The slave laser is a free running diode which is injection-locked by a small fraction of the frequency shifted master oscillator light. Good long- and short-time frequency stability are observed for both the Zeeman-locked master oscillator and the injection-locked slave laser.  相似文献   

18.
孟增明  黄良辉  彭鹏  陈良超  樊浩  王鹏军  张靖 《物理学报》2015,64(24):243202-243202
采用光学相位锁定环路技术将外腔反馈式半导体激光器锁定到与钛宝石激光器输出激光频率上. 锁定后两束激光的差频线宽从MHz降低到Hz量级, 同时两束激光的频率差可实现几百兆赫兹到7 GHz的精密调节. 锁定的两束激光作用在铷原子玻色-爱因斯坦凝聚的两个基态超精细态F=2, 1, 观测到在两个超精细态之间的拉曼跃迁. 该技术可用于超冷原子两个超精细态之间自旋轨道耦合.  相似文献   

19.
Troger J  Thévenaz L  Robert P 《Optics letters》1999,24(21):1493-1495
We report a novel application of self-injection locking. A diode laser is injection locked to its own frequency-shifted emission. By resonant phase modulation of the fed-back light, the laser's emission frequency is shown to swing periodically through the locking range. The laser operates as a sweep generator driven by resonant self-injection locking.  相似文献   

20.
We report a robust method of directly stabilizing a grating feedback diode laser to an arbitrary frequency in a large range. The error signal, induced from the difference between the frequency measured by a wavelength meter and the preset target frequency, is fed back to the piezoelectric transducer module of the diode laser via a sound card in the computer. A visual Labview procedure is developed to realize a feedback system. In our experiment the frequency drift of the diode laser is reduced to 8 MHz within 25 min. The robust scheme can be adapted to realize the arbitrary frequency stabilization for many other kinds of lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号