首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The structures of 18-crown-6 (18C6) complexes with K+ and Rb+ in methanolic solutions have been studied by X-ray absorption fine structure (XAFS) at the Br K-edge as well as at the K and Rb K-edges. The XAFS spectrum at the K or Rb K-edge has indicated that either Br or solvent (methanol) molecules are present in the first coordination shell of K+ or Rb+ complexed by 18C6. However, the spectra obtained at the Br-K edge have strongly suggested that the alkali cations do not exist in the vicinity of Br, indicating that no direct ion-pairing occurs between the 18C6 complex and Br. The 18C6-K+ complex maintains D 3d symmetry even in methanol, and two methanol molecules coordinate the cation possibly from above and below the crown plane. In contrast, the corresponding Rb+ complex possibly forms an umbrella-shaped complex, in which Rb+ is situated slightly off the crown plane and three solvent molecules bind With the cation.  相似文献   

2.
The complex formation between La3+, UO22+ Ag+, and NH4+ cations and macrocyclic ligand, dicyclohexyl-18-crown-6 (DCH18C6), was studied in acetonitrile-tetrahydrofuran (AN-THF) binary mixtures at different temperatures using the conductometric method. The results show that with the exception of complexation of the NH4+ cation with DCH18C6 in pure acetonitrile, the stoichiometry of all the complexes is being 1: 1 (M: L). The stability constants of the complexes were determined using a GENPLOT computer program. The nonlinear behavior which was observed for changes of log K f of the complexes versus the composition of the mixed solvent was discussed in terms of solvent-solvent interaction in their binary solution, which results in changing the chemical and physical properties of the constituent solvents when they mix with one another and, therefore, changing the solvation capacities of the metal cations, crown ether molecules, and even the resulting complexes with changing the mixed solvent composition. The results show that the selectivity of DCH18C6 for the studied cations changes with the composition of the AN-THF binary system. The sequence of stabilities of complexes in an AN-THF binary solution (mol. % AN = 75.0) at 25°C is [(DCH18C6)La)]3+ > [(DCH18C6)UO2]2+ > [(DCH18C6)Ag]+ ∼ [(DCH18C6)NH4]+, but in the case of other binary systems of AN/THF (mol. % AN = 25.0 and 50.0) is [(DCH18C6)La]+ > [(DCH18C6)NH4]+ ∼ [DCH18C6)UO2]2+ > [(DCH18C6)Ag]+. The text was submitted by the authors in English.  相似文献   

3.
The complexation reactions betweenT1+, Hg2+ andAg+ metal cations with 18-Crown-6 (18C6)were studied in acetonitrile (AN)-methanol (MeOH) andbenzonitrile (BN)-methanol (MeOH) binary mixtures at differenttemperatures using the conductometric method. The conductance datashow that the stoichiometry of the complexes in most cases is1 : 1 (ML), but in the case of theTl+ cation, in addition to a1 : 1 complex, a 1 : 2 (ML2)complex is formed in solutions. A non-linear behaviourwas observed for the variation of log Kfof the complexes vs the composition of the binary mixed solvents. The stability of 18C6 complexes with T1+, Hg2+ and Ag+ cations is sensitive to solvent composition and in some cases, the stability order is changed with changingthe composition of the mixed solvents. The values of the thermodynamic parameters (Δ Hc°, Δ Sc°) for formation of 18C6-T1+, 18C6-Hg+2 and the 18C6-Ag+ complexes were obtained from the temperature dependence of the stability constants and the results show that the thermodynamics of the complexationreactions is affected by the nature and composition of the mixed solvents and in most cases, the complexes are enthalpy destabilized but entropy stabilized.  相似文献   

4.
ACE was applied to the quantitative evaluation of noncovalent binding interactions between benzo‐18‐crown‐6‐ether (B18C6) and several alkali metal ions, Li+, Na+, K+, Rb+ and Cs+, in a mixed binary solvent system, methanol–water (50/50 v/v). The apparent binding (stability) constants (Kb) of B18C6–alkali metal ion complexes in the hydro‐organic medium above were determined from the dependence of the effective electrophoretic mobility of B18C6 on the concentration of alkali metal ions in the BGE using a nonlinear regression analysis. Before regression analysis, the mobilities measured by ACE at ambient temperature and variable ionic strength of the BGE were corrected by a new procedure to the reference temperature, 25°C, and the constant ionic strength, 10 mM . In the 50% v/v methanol–water solvent system, like in pure methanol, B18C6 formed the strongest complex with potassium ion (log Kb=2.89±0.17), the weakest complex with cesium ion (log Kb=2.04±0.20), and no complexation was observed between B18C6 and the lithium ion. In the mixed methanol–water solvent system, the binding constants of the complexes above were found to be about two orders lower than in methanol and about one order higher than in water.  相似文献   

5.
A study was carried out in aqueous solutions using luminescence technique to investigate the effects of pH, salt concentration, and temperature on the polyacrylic acid/uranyl ion (PAA/UO) complex formation as well as competitive phenomena of enhancement and quenching effects on photoexcited state of uranyl ions. It was found that excess of H+ and OH? is not favorable for complexation between uranyl ions and polymer. Added nitrate salts of Na+ and K+ had significant enhancement effect on emission spectra of PAA/UO complex. These results indicated that the metal ion/polymer chain complex collapsed by addition of salts and then complex became more compact with consequent phase separation. No significant effect of temperature on the PAA/UO complex stability has been observed between 25–50 °C. The quenching rate constants obtained from Stern–Volmer plots were found to be in the order of kq(H+) >> kq(K+) > kq(Na+). © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2737–2744, 2005  相似文献   

6.
The first intermolecular early main group metal–alkene complexes were isolated. This was enabled by using highly Lewis acidic Mg centers in the Lewis base-free cations (MeBDI)Mg+ and (tBuBDI)Mg+ with B(C6F5)4 counterions (MeBDI=CH[C(CH3)N(DIPP)]2, tBuBDI=CH[C(tBu)N(DIPP)]2, DIPP=2,6-diisopropylphenyl). Coordination complexes with various mono- and bis-alkene ligands, typically used in transition metal chemistry, were structurally characterized for 1,3-divinyltetramethyldisiloxane, 1,5-cyclooctadiene, cyclooctene, 1,3,5-cycloheptatriene, 2,3-dimethylbuta-1,3-diene, and 2-ethyl-1-butene. In all cases, asymmetric Mg–alkene bonding with a short and a long Mg−C bond is observed. This asymmetry is most extreme for Mg–(H2C=CEt2) bonding. In bromobenzene solution, the Mg–alkene complexes are either dissociated or in a dissociation equilibrium. A DFT study and AIM analysis showed that the C=C bonds hardly change on coordination and there is very little alkene→Mg electron transfer. The Mg–alkene bonds are mainly electrostatic and should be described as Mg2+ ion-induced dipole interactions.  相似文献   

7.
The complex formation between Na+, K+, Cs+, Rb+ and Tl+ metal cations with macrocyclic ligand, dicyclohexyl-18-crown-6 (DCH18C6) was studied in acetonitrile-water (AN-H2O) binary systems at different temperatures using conductometric method. DCH18C6 forms 1:1 complexes with these metal cations. The stability constants of the complexes were obtained from fitting of molar conductivity curves using a computer program Genplot. The results show that the selectivity order of DCH18C6 for the metal cations in acetonitrile-water mixtures (AN = 25.3 and 50.4 mol %) is: Tl+ > K+ > Rb+ > Cs+ > Na+. A non-linear behaviour was observed between the log K f of the complexes versus the composition of the mixed solvent which it related to changes of acidity, basicity, polarity and also polarizability of AN-H2O mixtures with the composition of this binary solution. The values of standard enthalpy changes (ΔH s0) for complexation reactions were obtained from the slope of the van’t Hoff plots and the changes in the standard entropy (ΔS s0) were calculated from the relationship: ΔG s,298.150 = ΔH s0 − 298.15ΔS s0. The obtained results show that in most cases, the complexes are enthalpy stabilized but entropy destabilized. Original Russian Text ? M.H. Soorgi, G.H. Rounaghi, M.S. Kazemi, 2008, published in Zhurnal Obshchei Khimii, 2008, vol. 78, No. 10, pp. 1627–1632.  相似文献   

8.
Stability constants of sodium and cesium ion complexes with 18-crown-6 (18C6) and dibenzo-18-crown-6 (DB18C6) in N-butyl-4-methyl-pyridinium tetrafluoroborate [BMP][BF4] aqueous solutions were measured using the 23Na and 133Cs NMR technique at 23 °C. To the best of our knowledge, the estimated values of stability constants reported in this study are the first such values given for ionic liquid solutions. The cationic exchange between the free and complexed species is rapid, and only formation of the 1:1 complexes [M(18C6)]+ and [M(DB18C6)]+ (M = Na+, Cs+) were observed. The complex formation constants demonstrated a strong dependence on the [BMP][BF4] concentration. For [M(18C6)]+, in solutions with a 0.33–0.70 mole fraction of water in [BMP][BF4], lg K values are found to be more than one unit higher than the lg K values measured in pure aqueous solutions, although no information concerning the influence of [BMP][BF4] on the complex formation selectivity could be observed. DB18C6 complexes revealed significantly lower stability under the same conditions. An extrapolation to zero water content gave the lg K = 2.42 for [Cs(18C6)]+ in [BMP][BF4]. It was discovered that when added to water, [BMP][BF4] increases the solubility of crown ethers and decreases the solubility of alkali metal nitrates. Complex formation with crown ethers enhances the solubility of alkali metal salts in [BMP][BF4].  相似文献   

9.
Stability constants K ML for the 1:1 complexes of Na+, K+, Rb+, and Cs+ with dibenzo-24-crown-8 (DB24C8) and dibenzo-18-crown-6 (DB18C6) in water have been determined by a capillary electrophoretic technique at 25°C. The K ML sequence is Na+ < K+ < Rb+ < Cs+ for DB24C8 and Na+ < K+ > Rb+ > Cs+ for DB18C6. Compared with DB18C6, DB24C8 exhibits higher selectivity for K+ over Na+, but lower selectivity for K+, Rb+, and Cs+. To evaluate the solvation of the complexes in water, their transfer activity coefficients sH2O between polar nonaqueous solvents and water have been calculated. The sH2O values provide the following information: interactions with water of the metal ions and of the crown-ether oxygens are greatly reduced upon complexation and the complexes undergo hydrophobic hydration in water; the character of each alkali metal ion in solvation is more effectively masked by DB24C8 than by DB18C6, because of the larger and more flexible ring structure of DB24C8. Solvent effects on the complex stabilities are discussed on the basis of the sH2O values.  相似文献   

10.
The constants for overall extraction into various diluents of low dielectric constants (Kex) and aqueous ion-pair formation (KMLA) of dibenzo-18-crown-6 (DB18C6)–sodium and potassium perchlorate 1:1:1 complexes (MLA) were determined at 25°C. The Kex value was analyzed by the four underlying equilibrium constants. The KMLA values were determined by applying our established method to this DB18C6/alkali metal perchlorate extraction system. The KM(DB18C6)A value of the perchlorate is much greater for K+ than for Na+, and is much smaller than that of the picrate. The KMLA value makes a negative contribution to the extractability of DB18C6 for MClO4, whereas the value of the MLA distribution-constant does a major one. The partition behavior of M(DB18C6)ClO4 obeys the regular solution theory. However, the M(DB18C6)ClO4 complexes in the diluent of high dipole moment somewhat undergo the dipole–dipole interaction. DB18C6 always shows high extraction selectivity for KClO4 over NaClO4, which is governed largely by the much greater KMLA value for K+ than for Na+. The K+ extraction-selectivity of DB18C6 over Na+ for perchlorate ions is comparable to that for picrate ions. By comparing this perchlorate system with the picrate one, the anion effects on the extraction-efficiency and -selectivity of DB18C6 for Na+ and K+ was discussed in terms of the fundamental equilibrium constants.  相似文献   

11.
The complexation reactions between K+, Ag+, NH4+, and Hg2+ cations and the macrocyclic ligand, dibenzo-18-crown-6 (DB18C6), were studied in ethylacetate (EtOAc)-dimethylformamide (DMF) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stochiometry of all the complexes is 1:1. A non-linear behavior was observed for the variation of log K f of the complexes versus the composition of binary mixed solvents, which was discussed in terms of heteroselective solvation and solvent-solvent interactions in binary solutions. It was found that the stability order of the complexes changes with changing the composition of the mixed solvents. The sequence of stabilities for the K+, Ag+, NH4+, and Hg2+ complexes with DB18C6 in EtOAc-DMF binary solutions (mol. % DMF 25.0) and (mol. % DMF 50.0) at 25°C is (DB18C6-Ag)+ > (DB18C6-K)+ > (DB18C6-Hg)2+ > (DB18C6-NH4)+, but in the cases of pure DMF and a binary solution of EtOAc-DMF (mol. % DMF 75.0) is (DB18C6-K)+ > (DB18C6-Hg)2+ > (DB18C6-Ag)+ ≈ (DB18C6-NH4)+. The values of thermodynamic quantities (ΔH c o, ΔS c o) for these complexation reactions have been determined from the temperature dependence of the stability constants, and the results show that the thermodynamics of the complexation reactions is affected by the nature and composition of the mixed solvents and, in all cases, positive values of ΔS c o characterize the formation of these complexes. In addition, the experimental results show that the values of entropies for the complexation reactions between K+, Ag+, NH4+, and Hg2+ cations and DB18C6 in EtOAc-DMF binary solutions do not change monotonically with the solvent composition. The text was submitted by the authors in English.  相似文献   

12.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   

13.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   

14.
The complexation reactions between Ag+, Hg2+ and Pb2+ metal cations with aza-18-crown-6 (A18C6) were studied in dimethylsulfoxide (DMSO)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complexes in most cases is 1:1(ML), but in some cases 1:2 (ML2) complexes are formed in solutions. A non-linear behaviour was observed for the variation of log K f of the complexes vs. the composition of the binary mixed solvents. Selectivity of A18C6 for Ag+, Hg2+ and Pb2+ cations is sensitive to the solvent composition and in some cases and in certain compositions of the mixed solvent systems, the selectivity order is changed. The values of thermodynamic parameters (ΔH co, ΔS co) for formation of A18C6–Ag+, A18C6–Hg2+ and A18C6–Pb2+ complexes in DMSO–H2O binary systems were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents.  相似文献   

15.
Interactions of hexaaza-18-crown-6 (HA18C6) and tetraaza-14-crown-4 (TA14C4) with iodine have been investigated spectrophotometrically in chloroform solution. The observed time dependence of the charge-transfer band and subsequent formation of I3 - in solution were related to the slow transformation of the initially formed 1:1 macrocycle. I2 outer complex to an inner electron donor-acceptor (EDA) complex, followed by fast reaction of the inner complex with iodine to form a triiodide ion, as follows: macrocycle + I2fast K f macrocycle.I2 (outer complex) macrocycle.I2 (outer complex) →slow (macrocycle.I+)I- (inner complex) macrocycle.I+)I- (inner complex) + I2slow (macrocycle.I+)I3 -. The pseudo-first-order rate constants at various temperatures for thetransformation process were evaluated from the absorbance-time data. The activation parameters (Ea, Δ H?, and Δ S?) for thetransformation were obtained from the temperature dependence of the rate constants. The stoichiometry and formation constants of the resulting EDA complexes have also been determined. It was found that the (TA14C4.I+)I3 - is more stable the (HA18C6.I+)I3 - complex in chloroform solution.  相似文献   

16.
We investigate the structural correlation of noncovalent crown ether/H+/L-tryptophan (CR/TrpH+) host–guest complexes in the solution phase with those in the gas phase generated through electrospray ionization/mass spectrometry (ESI/MS) techniques. We perform quantum chemical calculations to determine their structures, relative Gibbs free energies, and infrared spectra. We compare the calculated infrared (IR) spectra with the IR multiphoton dissociation (IRMPD) spectra observed for the 18-Crown-6/TrpH+ complex by Polfer and co-workers [J. Phys. Chem. A 2013, 117, 1181–1188] for assigning the IR bands. We observe that the carboxyl group remains “naked,” lacking hydrogen bonding with the CR unit in the gas phase, and that this most stable conformer originates from the corresponding lowest Gibbs free energy structure in solution. Based on these findings, we propose that gas phase host–guest complexes directly correlate with those in solution, reinforcing the possibility of obtaining invaluable information about host–guest–solvent interactions in solution from the structure of the host–guest pair in the gas phase.  相似文献   

17.
The overall extraction equilibrium constants, Kex, of 1:1:m complexes of 1,2-bis[2-(2-methoxyethoxy)ethoxyjbenzene (AC · B18C6) with uni- and bivalent metal picrates, MA m were determined at 25°C between CHCl3 and water, and thereby the ion-pair complex-formation constants,K MLA,o, of AC · B18C6 with the univalent metal picrates in CHCl3 were calculated. The AC · B18C6 is an open-chain analog of benzo-18-crown-6 (B18C6). The equilibrium constants of AC · B18C6 were compared with those of B18C6. Kex sequences of AC · B18C6 for uni- and bivalent metals are Tl+ > K+ > Rb+ > Cs+ > Na+ > Li+ and Pb2+ > Ba2+ > Sr2+, respectively. The same extraction-selectivity was observed for B18C6, but the extractability of AC · B18C6 for the same cation is much lower than that of B18C6; the extraction selectivity of AC · B18C6 for alkali metals is lower than that of B18C6. TheK MLA,o sequence of AC · B18C6 is K+ > Rb+ > Tl+ > Cs+ Na+, which is consistent with that of B18C6. ButK MLA,o of AC · B18C6 is much smaller than the correspondingK MLA,o of B18C6; the selectivity of AC · B18C6 among alkali metal picrates in CHCl3 is lower than that of BI8C6. This reflects the difference in the structures between AC · B18C6 (acyclic and flexible) and B18C6 (cyclic and rigid).  相似文献   

18.
Two supramolecular crown ether complexes [Na(DC18C6-A)(H2O)]{[Na(DC18C6-A)][Cd(mnt)2]} (1) and [K(DC18C6-A)]2[Cd(mnt)2] (2) (DC18C6-A = cis-syn-cis-dicyclohexyl-18-crown-6, isomer A; mnt = maleonitriledithiolate) have been synthesized and characterized by elemental analysis, FT-IR spectroscopy and X-ray single crystal diffraction. Complex 1 is composed of one [Na(DC18C6-A)(H2O)]+ complex cation and one {[Na(DC18C6-A)][Cd(mnt)2]}complex anion and displays an infinite chain-like structure through N–Na–N interactions. In complex 2, [K(DC18C6-A)]+ complex cation and [Cd(mnt)2]2− complex anion afford a novel 1D ladder-like structure by N–K–N, N–K–S interactions.  相似文献   

19.
[K(18C6)]2[Pd2Cl6] ( 1 ) (18C6 = 18‐crown‐6) was found to react with pyridines in a strictly stoichiometric ratio 1 : 2 in methylene chloride or nitromethane to yield trichloropalladate(II) complexes [K(18C6)][PdCl3(py*)] (py* = py, 2a ; 4‐Bnpy, 2b ; 4‐tBupy, 2c ; Bn = benzyl; tBu = tert‐butyl). The reaction of 1 with pyrimidine (pyrm) in a 1 : 1 ratio led to the formation of the pyrimidine‐bridged bis(trichloropalladate) complex [K(18C6)]2[(PdCl3)2(μ‐pyrm)] ( 3 ). The identities of the complexes were confirmed by means of NMR spectroscopy (1H, 13C) and microanalysis. The X‐ray structure analysis of 2a reveals square‐planar coordination of the Pd atom in the [PdCl3(py)]? anion. The pyridine plane forms with the complex plane an angle of 55.8(2)°. In the [K(18C6)]+ cation the K+ lies outside the mean plane of the crown ether (defined by the 6 O atoms) by 0.816(1) Å. There are tight K···Cl contacts between the cation and the anion (K···Cl1 3.340(2) Å, K···Cl2 3.166(2) Å). To gain an insight into the conformation of the [PdCl3(py)]? anion, DFT calculations were performed showing that the equilibrium structure ( 6eq ) has an angle between the pyridine ligand and the complex plane of 35.3°. Rotation of the pyridine ligand around the Pd–N vector exhibited two transition states where the pyridine ligand lies either in the complex plane ( 6TS pla, 0.87 kcal/mol above 6eq ) or is perpendicular to it ( 6TS per, 3.76 kcal/mol above 6eq ). Based on an energy decomposition analysis the conformation of the anion is discussed in terms of repulsive steric interactions and of stabilizing σ and π orbital interactions between the PdCl3? moiety and the pyridine ligand.  相似文献   

20.
The complexation of some alkali and alkaline earth cations with18-crown-6(18C6), dibenzo-18-crown-6 (DB18C6), dicyclohexyl-18-crown-6 (DCY18C6), and dibenzopyridino-18-crown-6 (DBPY18C6) in a methanol solution has been studied by a competitive potentiometric titration using Ag+/Ag electrode as a probe. The stoichiometry and stability constants of the resulting complexes have been evaluated by the MINIQUAD program. The stoichiometry for all resulting complexes was 1:1. The order of stability of Ag+ complexes with desired crown ethers varied as DBPY18C6 > DCY18C6 > 18C6 > DB18C6.The stability of the resulting complexes for each of these crown ethers varies in the order ofK+ > Na+ and Ba2+ > Sr2+ > Ca2+ > Mg2+.For each of the used metal ions the major sequence of the stability constants of the resulting complexes varies as DCY18C6 > 18C6 > DB18C6 > DBPY18C6 with minor exceptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号