首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
共轭传热现象在科学和工程领域中大量存在. 随着计算能力的发展, 对共轭传热现象进行准确有效的数值模拟, 成为科学研究和工程设计上的重要挑战.共轭传热数值模拟的方法可以分为两大类: 分区耦合和整体耦合.本文采用有限元法对共轭传热问题进行整体耦合模拟. 固体传热求解采用标准的伽辽金有限元方法.流动求解采用基于特征分裂的有限元方法. 该方法是一种重要的求解流动问题的有限元方法, 可以使用等阶有限元. 该方法的准隐格式与其他格式相比, 具有时间步长大的特点. 将稳定项中的时间步长与全局时间步长分开, 改进了准隐格式的稳定性. 基于改进的特征分裂有限元方法的准隐格式, 发展了一种层流共轭传热数值模拟的整体耦合方法. 采用这种方法可以将流体计算域和固体计算域作为一个整体划分有限元网格, 并且所有变量都可以采用相同的插值函数, 从而有利于程序的实现. 通过对典型问题的模拟, 验证了这种方法的准确性. 本工作还研究了固体区域时间步长对定常共轭传热问题数值模拟收敛性的影响.   相似文献   

2.
An improved scheme of the continuity vorticity pressure (CVP) variational equations method is presented. The changes from the original version of the CVP method concern the velocity and the pressure correction equations that are used in the solution procedure and the topology of the grid where the method is applied. The improved CVP scheme is faster, simpler and more stable than the original version of the method. The efficiency and the accuracy of the new scheme are tested and validated through comparison of predictions and of computational time, with numerical results obtained with the SIMPLE method. Moreover, we present extensive comparisons of the results of the improved CVP scheme with numerical and experimental data from various researchers that show excellent agreement for a wide range of benchmark 2D and 3D laminar internal flow problems such as flow over a backward facing step, flow in square, circular and elliptical curved ducts and pulsating flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The results of a research project to verify the newly improved multiple- level model for 3D tidal current analysis in Tokyo Bay are presented. The improved multiple-level model includes additional effects due to Coriolis force, river inflows and wind shear stresses. Furthermore, a new numerical treatment of the open boundary condition was applied which effectively eliminated the spurious reflective waves often generated by various numerical methods simulating free surface flows. The mean (time-averaged or residual) and tidal currents in Tokyo Bay were simulated as examples to demonstrate the validity and capability of the newly improved multiple-level model. A series of numerical experiments was conducted to carefully examine the tidal circulations affected by the forcing factors of Coriolis force, river inflows and wind shears, both individually and combined. The numerical results demonstrated that the effects of each forcing term are physically reasonable, with the wind shear effect being the most significant and the case including all forcing terms being in best overall agreement with the field data collected in Tokyo Bay by the Ministry of Transportation. This study has contributed not only to the verification of the newly improved multiple-level model but also to the enhancement of the accuracy of numerical simulations of three-dimensional flow in coastal waters by this model.  相似文献   

4.
The shock instability phenomenon is a well‐known problem for hypersonic flow computation by the shock‐capturing Roe scheme. The pressure checkerboard is another well‐known problem for low‐Mach‐number flow computation. The momentum interpolation method (MIM) is necessary for low‐Mach‐number flows to suppress the pressure checkerboard problem, and the pressure‐difference‐driven modification for cell face velocity can be regarded as a version of the MIM by subdividing the numerical dissipation of the Roe scheme. In this paper, MIM has been discovered through analysis and numerical tests to have the most important function in shock instability. MIM should be completely removed for nonlinear flows. However, the unexpected MIM is activated on the cell face nearly parallel to the flow for the high‐Mach‐number flows or low‐Mach‐number cells in numerical shock. Therefore, MIM should be retained for low‐Mach‐number flows and be completely removed for high‐Mach‐number flows and low‐Mach‐number cells in numerical shock. For such conditions, two coefficients are designed on the basis of the local Mach number and a shock detector. Thereafter, the improved Roe scheme is proposed. This scheme considers the requirement of MIM for incompressible and compressible flows, and is validated for good performance of numerical tests. An acceptable result can also be obtained with only the Mach number coefficient for general practical computation. Therefore, the objective of decreasing rather than increasing numerical dissipation to cure shock instability can be achieved with simple modification. Moreover, the mechanism of shock instability has been profoundly understood, in which MIM plays the most important role, although it is not the only factor. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The specified-time-interval (STI) scheme has been used commonly in applying the method of characteristics (MOC) to unsteady open-channel flow problems. However, with the use of STI scheme, the numerical error for the simulation results can always be induced due to the interpolation used to approximate the characteristics trajectory. Hence, in order to remedy the numerical errors caused by the interpolation, one needs to seek some kind of interpolation technique with higher-order accuracy. Instead of the linear interpolation technique, which has been used very commonly and can induce serious numerical diffusion, the Holly--Preissmann two-point, method, which is a cubic interpolation technique with fourth-order of accuracy, is proposed here to integrate with the method of characteristics for the computation of one-dimensional unsteady flow in open channel. The concept of reachback and reachout in space and time directions for the characteristics is also introduced to assure the model stability. The computed results from this new model are compared with those computed by using the Preissmann four-point scheme and the multimode method of characteristics with linear interpolation.  相似文献   

6.
A systematic study has been conducted to assess the performance of the TVD schemes for practical flow computation. The viewpoint adopted here is to treat the TVD schemes as a combination of the standard central difference scheme with numerical dissipation terms. The controlled amount of numerical dissipation modifies the computed fluxes to ensure that the solution is oscillation-free. Four variants of TVD schemes, two with upwind dissipation terms and two with symmetric dissipation terms, have been studied and compared with the conventional Beam-Warming scheme for inviscid and turbulent axisymmetric flow computations. The results obtained show that all four variants can accurately resolve the shock and flow profiles with fewer grid points than the Beam-Warming scheme. The convergence rates of the TVD schemes are also substantially superior to that of the Beam-Warming scheme. The combination of high accuracy, good robustness and improved computational efficiency offered by the TVD schemes makes them attractive for computing high-speed flow with shocks. In terms of the relative performances it is found that the symmetric schemes converge slightly faster but that the upwind schemes are less sensitive to the number of grid points being employed.  相似文献   

7.
Study on the numerical schemes for hypersonic flow simulation   总被引:1,自引:0,他引:1  
Hypersonic flow is full of complex physical and chemical processes, hence its investigation needs careful analysis of existing schemes and choosing a suitable scheme or designing a brand new scheme. The present study deals with two numerical schemes Harten, Lax, and van Leer with Contact (HLLC) and advection upstream splitting method (AUSM) to effectively simulate hypersonic flow fields, and accurately predict shock waves with minimal diffusion. In present computations, hypersonic flows have been modeled as a system of hyperbolic equations with one additional equation for non-equilibrium energy and relaxing source terms. Real gas effects, which appear typically in hypersonic flows, have been simulated through energy relaxation method. HLLC and AUSM methods are modified to incorporate the conservation laws for non-equilibrium energy. Numerical implementation have shown that non-equilibrium energy convect with mass, and hence has no bearing on the basic numerical scheme. The numerical simulation carried out shows good comparison with experimental data available in literature. Both numerical schemes have shown identical results at equilibrium. Present study has demonstrated that real gas effects in hypersonic flows can be modeled through energy relaxation method along with either AUSM or HLLC numerical scheme.  相似文献   

8.
The lattice Boltzmann equation method in three dimensions used to analyze compressible thermal flow in 30 MeV cyclotrons. Cyclotron produced radionuclides have diagnostic applications in nuclear medicine. This cyclotron has horizontal conically shaped and window air cooling in the front and water cooling of the body. Gas heated by irradiation. This scheme is a new type of simulation method for solving the time dependent Navier–Stokes equations in a compressible flow regime. The improved model is convenient to compromise the high accuracy and stability. The included dispersion term can effectively reduce the numerical oscillation at discontinuity. The lattice Boltzmann scheme with uniform mesh resolution is applied as a numerical research tool.  相似文献   

9.
This paper is on the application of the upwind difference scheme proposed by the author[1] to the calculation of supersonic steady-state flow in axisymmetric nozzles. The upwind scheme is conservative (or weakly conservative), it yields results approximating those from the characteristic relations, and it has corresponding boundary difference schemes. The entropy phenomenon in the calculation of shock reflection on boundaries with the shock-capturing method will be discussed and a correction of this phenomenon will be proposed. From numerical experiments on an arbitrary nozzle, it is seen that the upwind difference scheme, its corresponding boundary scheme, and the improved treatment of shock reflection work well for the calculation of supersonic steady-state flow in axisymmetric nozzles.  相似文献   

10.
This paper uses a fourth‐order compact finite‐difference scheme for solving steady incompressible flows. The high‐order compact method applied is an alternating direction implicit operator scheme, which has been used by Ekaterinaris for computing two‐dimensional compressible flows. Herein, this numerical scheme is efficiently implemented to solve the incompressible Navier–Stokes equations in the primitive variables formulation using the artificial compressibility method. For space discretizing the convective fluxes, fourth‐order centered spatial accuracy of the implicit operators is efficiently obtained by performing compact space differentiation in which the method uses block‐tridiagonal matrix inversions. To stabilize the numerical solution, numerical dissipation terms and/or filters are used. In this study, the high‐order compact implicit operator scheme is also extended for computing three‐dimensional incompressible flows. The accuracy and efficiency of this high‐order compact method are demonstrated for different incompressible flow problems. A sensitivity study is also conducted to evaluate the effects of grid resolution and pseudocompressibility parameter on accuracy and convergence rate of the solution. The effects of filtering and numerical dissipation on the solution are also investigated. Test cases considered herein for validating the results are incompressible flows in a 2‐D backward facing step, a 2‐D cavity and a 3‐D cavity at different flow conditions. Results obtained for these cases are in good agreement with the available numerical and experimental results. The study shows that the scheme is robust, efficient and accurate for solving incompressible flow problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A conservative local interface sharpening scheme has been developed for the constrained interpolation profile method with the conservative semi‐Lagrangian scheme, because the conservative semi‐Lagrangian scheme does not feature a mechanism to control the interface thickness, thus causing an increase of numerical error with the advance of the time step. The proposed sharpening scheme is based on the conservative level set method proposed by Olsson and Kreiss. However, because their method can cause excessive deformation of the free‐surface in certain circumstances, we propose an improvement of the method by developing a local sharpening technique. Several advection tests are presented to assess the correctness of the advection and the improved interface sharpening scheme. This is followed by the validations of dam‐breaking flow and the rising bubble flows. The mass of the fluid is exactly conserved and the computed terminal velocity of the rising bubble agrees well with the experiments compared with other numerical methods such as the volume of fluid method (VOF), the front tracking method, and the level set method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The CE/SE (the space-time conservation element and solution element method) scheme with the second-order accuracy has been proposed. And the pretreatment method has been introduced to convert the parabolic equations to the hyperbolic equations, which are accurately solved by the CE/SE method. The lid-driven rectangular cavity containing a porous Brinkman–Forchheimer medium is studied in this numerical investigation. The Brinkman–Forchheimer equation is used such that both the inertial and viscous effects are incorporated. The governing equations are solved by the improved CE/SE approach. The characteristics of the flow are analyzed with emphasis on the influence of the Darcy number and the cavity depth. It is found that the porous medium effect decreases both the strength and the number of eddies, especially for deep cavities.  相似文献   

13.
建立了基于位移相等条件的流固耦合数值模拟程序框架,通过串联弱耦合方式对爆炸冲击波作用下流固耦合效应进行数值模拟. 其中非线性固体位移场采用基于Lagrange方法描述的时域间断伽辽金有限元方法进行处理. 基于修正弹簧近似的非结构动网格新技术,非定常流场采用格心格式的有限体积方法进行求解. 数值模拟结果表明: 该文所发展的弱耦合分析程序在流固耦合数值模拟过程中具有可靠的计算精度. 同时,程序对于爆炸强间断气动冲击载荷冲击作用下固体变形引起流场的反射和叠加效应, 以及流场变化引起复杂的固体响应具有良好的耦合求解能力.  相似文献   

14.
A new finite element technique has been developed for employing integral-type constitutive equations in non-Newtonian flow simulations. The present method uses conventional quadrilateral elements for the interpolation of velocity components, so that it can conveniently handle viscoelastic flows with both open and closed streamlines (recirculating regions). A Picard iteration scheme with either flow rate or elasticity increment is used to treat the non-Newtonian stresses as pseudo-body forces, and an efficient and consistent predictor-corrector scheme is adopted for both the particle-tracking and strain tensor calculations. The new method has been used to simulate entry flows of polymer melts in circular abrupt contractions using the K-BKZ integral constitutive model. Results are in very good agreement with existing numerical data. The important question of mesh refinement and convergence for integral models in complex flow at high flow rate has also been addressed, and satisfactory convergence and mesh-independent results are obtained. In addition, the present method is relatively inexpensive and in the meantime can reach higher elasticity levels without numerical instability, compared with the best available similar calculations in the literature.  相似文献   

15.
王刚  干源  任炯 《力学学报》2022,54(12):3418-3429
Walsh函数有限体积法(FVM-WBF)是一种能够在网格内部捕捉间断的新型数值方法. 持续增加Walsh基函数数目能够稳步提高FVM-WBF方法的求解分辨率, 但计算量暴发式增长和收敛速度下降的问题也会同步出现. 针对Walsh基函数数目增加而引起的计算效率问题, 本文分析了Walsh基函数及其系数所能影响的网格单元局部均值区域尺度, 发现其中隐含类似多重网格的尺度特征, 据此提出一种结合多重网格策略的FVM-WBF方法. 在定常流场计算中根据各级Walsh基函数影响尺度的不同, 对每级Walsh基函数设置满足其稳定性约束的时间步长, 在时间推进求解的过程中快速消除不同波长的数值误差, 实现多重网格的加速收敛效果. 选取NACA0012翼型和二维圆柱的定常无黏绕流问题作为算例, 对引入多重网格策略的FVM-WBF方法和不考虑多重网格策略的FVM-WBF方法进行对比测试. 数值结果证实: 新发展的FVM-WBF方法具备多重网格的关键特征, 在不增加任何特殊处理和计算量的情况下, 只需通过时间步长的调整, 就能够达到多重网格的加速效果, 显著提升计算效率.   相似文献   

16.
贾勇  孙刚  刘苏 《力学季刊》2007,28(2):223-227
波阻是飞行器超音速飞行的关键设计因素,精确捕捉激波在流场中的位置,是数值模拟含激波流场和精确计算波阻的一个重要研究内容.本文基于网格节点有限体积空间离散方法,采用AUSM格式与FVS格式的混合格式(MAUSM方法)计算对流通量,从而抑制在数值模拟流场出现的激波处振荡和过冲现象,确保AUSM准确捕获接触间断的特性和FVS格式捕捉激波的能力.本文使用MAUSM方法分别计算了在跨声速和超声速条件下的NACA0012翼型流场,并与中心差分格式的计算结果进行比较.结果表明,对于存在激波的翼型流场,MAUSM方法是有效的.  相似文献   

17.
基于非结构化同位网格的SIMPLE算法   总被引:4,自引:1,他引:4  
通过基于非结构化网格的有限体积法对二维稳态Navier—Stokes方程进行了数值求解。其中对流项采用延迟修正的二阶格式进行离散;扩散项的离散采用二阶中心差分格式;对于压力-速度耦合利用SIMPLE算法进行处理;计算节点的布置采用同位网格技术,界面流速通过动量插值确定。本文对方腔驱动流、倾斜腔驱动流和圆柱外部绕流问题进行了计算,讨论了非结构化同位网格有限体积法在实现SIMPLE算法时,迭代次数与欠松弛系数的关系、不同网格情况的收敛性、同结构化网格的对比以及流场尾迹结构。通过和以往结果比较可知,本文的方法是准确和可信的。  相似文献   

18.
A 3-D FEM/FDM overlapping scheme for viscous, incompressible flow problems is presented that combines the finite element method, which is best suited to analyze flow in any arbitrarily shaped flow geometry, with the finite difference method, which is advantageous in both computing time and computer storage. The combination of both methods enables large-scale viscous flow to be analyzed, which is crucial both for detailed analysis of 3-D flows and for solving flow problems around moving bodies, A modified ABM AC method is used as the basic algorithm, to which a sophisticated time integration scheme, proposed by the present authors, has been applied. In this paper, some numerical results including 3-D heat and mass transfer problem and moving-boundary problems are presented.  相似文献   

19.
A numerically fast algorithm has been developed to solve the viscous two-phase flow in an axisymmetric rocket nozzle. A Eulerian–Eulerian approach is employed in the computation to couple the gas–particle flow. Turbulence closure is achieved using a Baldwin–Lomax model. The numerical procedure employs a multistage time-stepping Runge–Kutta scheme in conjunction with a finite volume method and is made computationally fast for the axisymmetric nozzle. The present numerical scheme is applied to compute the flow field inside JPL and AGARD nozzles. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
IntroductionGeneralimplicitmethods (FuD .X .[1],Hirsch[2 ])canbewrittenasImplicitPart =ExplicitPart . (1 )IthasbeenproposedbyMacCormack[3]thatmodernimplicitmethodscanbewrittenasNumericalPartδiU =PhysicalPart . (2 )  Thephysicalpartreflectsthechangeruleofphysicalparame…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号