首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Advection upstream splitting method (AUSM) and Harten-Lax-van Leer with contact (HLLC) are two popular families of flux functions. The AUSM is simple and requires no eigenstructure, which facilitates its extensions to general equations of state. Furthermore, one of its variants, simple low-dissipation AUSM (SLAU), is applicable to all speeds and features removal of parameter setting by the user. HLLC, on the other hand, clearly defines three distinct waves in Riemann problem, namely, left-running and right-running acoustic waves, and entropy wave. This paper demonstrates that HLLC can be written in a very similar form with the AUSM family and that the similar manner in extending AUSM family to all speeds is easily incorporated into HLLC in this AUSM-like form. Then, we combine the strengths of the both flux functions and offer a new inviscid numerical flux function within the framework of monotone upwind scheme for conservation laws (MUSCL) in computational fluid dynamics (CFD) for Euler and Navier-Stokes equations. The resultant HLLC with low dissipation (HLLCL) numerical flux can compute low Mach number flows and sound propagations at the same time with high accuracy, as demonstrated by one-dimensional and two-dimensional numerical examples. Furthermore, the results indicate that its extensions to general fluids such as supercritical fluids are encouraging.  相似文献   

2.
基于过去开展稀薄自由分子流到连续流气体运动论统一算法框架,采用转动惯量描述气体分子自旋运动,确立含转动非平衡效应各流域统一玻尔兹曼模型方程.基于转动能量对分布函数守恒积分,得到计及转动非平衡效应气体分子速度分布函数方程组,使用离散速度坐标法对分布函数方程所依赖速度空间离散降维;应用拓展计算流体力学有限差分方法,构造直接求解分子速度分布函数的气体动理论数值格式;基于物面质量流量通量守恒与能量平衡关系,发展计及转动非平衡气体动理论边界条件数学模型及数值处理方法,提出模拟各流域转动非平衡效应玻尔兹曼模型方程统一算法.通过高、低不同马赫数1:5~25氮气激波结构与自由分子流到连续流全飞行流域不同克努森数(9×10-4~10)Ramp制动器、圆球、尖双锥飞行器、飞船返回舱外形体再入跨流域绕流模拟研究,将计算结果与有关实验数据、稀薄流DSMC模拟值等结果对比分析,验证统一算法模拟自由分子流到连续流再入过程高超声速绕流问题的可靠性与精度.  相似文献   

3.
基于过去开展稀薄自由分子流到连续流气体运动论统一算法框架,采用转动惯量描述气体分子自旋运动,确立含转动非平衡效应各流域统一玻尔兹曼模型方程.基于转动能量对分布函数守恒积分,得到计及转动非平衡效应气体分子速度分布函数方程组,使用离散速度坐标法对分布函数方程所依赖速度空间离散降维;应用拓展计算流体力学有限差分方法,构造直接求解分子速度分布函数的气体动理论数值格式;基于物面质量流量通量守恒与能量平衡关系,发展计及转动非平衡气体动理论边界条件数学模型及数值处理方法,提出模拟各流域转动非平衡效应玻尔兹曼模型方程统一算法.通过高、低不同马赫数1:5~25氮气激波结构与自由分子流到连续流全飞行流域不同克努森数(9×10-4~10)Ramp制动器、圆球、尖双锥飞行器、飞船返回舱外形体再入跨流域绕流模拟研究,将计算结果与有关实验数据、稀薄流DSMC模拟值等结果对比分析,验证统一算法模拟自由分子流到连续流再入过程高超声速绕流问题的可靠性与精度.   相似文献   

4.
In this paper, an algorithm for chemical non‐equilibrium hypersonic flow is developed based on the concept of energy relaxation method (ERM). The new system of equations obtained are studied using finite volume method with Harten–Lax–van Leer scheme for contact (HLLC). The original HLLC method is modified here to account for additional species and split energy equations. Higher order spatial accuracy is achieved using MUSCL reconstruction of the flow variables with van Albada limiter. The thermal equilibrium is considered for the analysis and the species data are generated using polynomial correlations. The single temperature model of Dunn and Kang is used for chemical relaxation. The computed results for a flow field over a hemispherical cylinder at Mach number of 16.34 obtained using the present solver are found to be promising and computationally (25%) more efficient. The present solver captures physically correct solution as the entropy conditions are satisfied automatically during the computations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
陈兵  徐旭  蔡国飙 《力学学报》2008,40(2):162-170
讨论了抛物化NS方程(parabolized Navier-Stokesequations, PNS)的数学性质,对比分析多种处理流向压力梯度的方法的优缺点. 以此为基础,成功地将LU-SGS隐式时间积分方法推广到PNS方程的流向空间积分上,发展了基于PNS方程的有限体积单次扫描空间推进算法(single-sweep parabolized Navier-Stokesalgorithm, SSPNS). 在该算法中,横向无黏数值通量和黏性通量分别采用混合型迎风格式和中心格式求解. 用SSPNS算法计算了4个典型流场,包括超声速平板流、15$^\circ$楔板压缩高超声速流、带攻角的高超声速锥形流和侧压式高超声速进气道流动. SSPNS计算结果与NASA UPS程序数值结果、文献提供的实验数据及理论分析结果符合得很好.对比研究表明,SSPNS 法与传统时间迭代法相比,二者计算精度相当,而SSPNS计算速度快1~2个量级,存储量至少低1个量级.关键词 抛物化NS方程;空间推进算法;LU-SGS隐式积分方法;超声速/高超声速流动   相似文献   

6.
空腔流动存在剪切层运动、涡脱落与破裂,以及激波与激波、激波与剪切层、激波与膨胀波和激波/涡/剪切层相互干扰等现象,流动非常复杂,特别是高马赫数(M>2)时,剪切层和激波更强,激波与激波干扰更严重,对数值格式的要求更高,既需要格式耗散小,对分离涡等有很高的模拟精度,又需要格式在激波附近具有较大的耗散,可以很好地捕捉激波,防止非物理解的出现。Roe和HLLC等近似Riemann解格式在高马赫数强激波处可能会出现红玉现象,而HLLE++格式大大改善了这种缺陷,在捕捉高超声速激波时避免了红玉现象的发生,同时还保持在光滑区域的低数值耗散特性。本文在结构网格下HLLE++格式的基础上,通过改进激波探测的求解,建立了基于非结构混合网格的HLLE++计算方法,通过无粘斜坡算例,验证了HLLE++格式模拟高马赫数流动的能力,并应用于高马赫数空腔流动的数值模拟,开展了网格和湍流模型影响研究,验证了方法模拟高马赫数空腔流动的可靠性和有效性。  相似文献   

7.
精确捕捉接触波和剪切波的Godunov型数值方法,如流行的HLLC格式,在模拟高超声速流动问题时会出现激波异常现象。对HLLC格式进行稳定性分析发现,流体主流方向的扰动都能有效衰减,但是横向的密度与剪切速度的扰动不会衰减。具有特殊对称性的二维Sedov爆轰波问题证明了横向通量和不稳定现象之间的密切联系。利用压力比和马赫数来探测数值激波层亚声速区的横向网格界面,并且在该界面的数值通量上增加熵波粘性和剪切波粘性来构造一种激波稳定的HLLC格式。分析表明,在熵波粘性和剪切波粘性的作用下,横向的所有扰动都会衰减。一系列数值测试证明了新格式不仅可以成功地抑制各类激波异常现象,还保留了原HLLC格式低耗散性的优点。  相似文献   

8.
A new HLLC (Harten-Lax-van leer contact) approximate Riemann solver with the preconditioning technique based on the pseudo-compressibility formulation for numerical simulation of the incompressible viscous flows has been proposed, which follows the HLLC Riemann solver (Harten, Lax and van Leer solver with contact resolution modified by Toro) for the compressible flow system. In the authors' previous work, the preconditioned Roe's Riemann solver is applied to the finite difference discretisation of the inviscid flux for incompressible flows. Although the Roe's Riemann solver is found to be an accurate and robust scheme in various numerical computations, the HLLC Riemann solver is more suitable for the pseudo-compressible Navier--Stokes equations, in which the inviscid flux vector is a non-homogeneous function of degree one of the flow field vector, and however the Roe's solver is restricted to the homogeneous systems. Numerical investigations have been performed in order to demonstrate the efficiency and accuracy of the present procedure in both two- and three-dimensional cases. The present results are found to be in good agreement with the exact solutions, existing numerical results and experimental data.  相似文献   

9.
在非结构混合网格上对化学非平衡粘性绕流进行了数值模拟。控制方程为考虑了化学非平衡效应的二维Navier-Stokes方程,化学动力学模型为7组元、7反应模型。控制方程中的对流项采用VanLeer逆风分裂格式处理,并应用MUSCL方法及Minmod限制器扩展到二阶精度,粘性项用中心差分格式处理。时间推进采用显式5步龙格-库塔方法。为了适应高超声速流场计算,对VanLeer通量分裂方法进行了改进,并引入了化学反应时间步长。对RAMC-II模型的飞行试验流场进行了数值模拟,计算结果与试验测量数据符合较好,并与参考文献中的数值模拟结果吻合。  相似文献   

10.
In this article, we apply Davis's second‐order predictor‐corrector Godunov type method to numerical solution of the Savage–Hutter equations for modeling granular avalanche flows. The method uses monotone upstream‐centered schemes for conservation laws (MUSCL) reconstruction for conservative variables and Harten–Lax–van Leer contact (HLLC) scheme for numerical fluxes. Static resistance conditions and stopping criteria are incorporated into the algorithm. The computation is implemented on graphics processing unit (GPU) by using compute unified device architecture programming model. A practice of allocating memory for two‐dimensional array in GPU is given and computational efficiency of two‐dimensional memory allocation is compared with one‐dimensional memory allocation. The effectiveness of the present simulation model is verified through several typical numerical examples. Numerical tests show that significant speedups of the GPU program over the CPU serial version can be obtained, and Davis's method in conjunction with MUSCL and HLLC schemes is accurate and robust for simulating granular avalanche flows with shock waves. As an application example, a case with a teardrop‐shaped hydraulic jump in Johnson and Gray's granular jet experiment is reproduced by using specific friction coefficients given in the literature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
An approximate method for the efficient calculation of stagnation-streamline quantities in hypersonic flows about spheres or cylinders is suggested. Based on the local similarity of the flow field the two-dimensional Navier-Stokes equations are simplified to a one-dimensional approximation for the stagnation streamline. These equations are solved with an implicit finite-volume scheme. Comparisons with fully two–dimensional Euler and Navier–Stokes calculations for flows about spheres are presented, that include perfect gas flows and flows in chemical non-equilibrium. Comparisons with a number of experiments conclude this report. Received 8 May 1996 / Accepted 31 October 1996  相似文献   

12.
A new flux vector splitting scheme has been suggested in this paper. This scheme uses the velocity component normal to the volume interface as the characteristic speed and yields the vanishing individual mass flux at the stagnation. The numerical dissipation for the mass and momentum equations also vanishes with the Mach number approaching zero. One of the diffusive terms of the energy equation does not vanish. But the low numerical diffusion for viscous flows may be ensured by using higher-order differencing. The scheme is very simple and easy to be implemented. The scheme has been applied to solve the one dimensional (1D) and multidimensional Euler equations. The solutions are monotone and the normal shock wave profiles are crisp. For a 1D shock tube problem with the shock and the contact discontinuities, the present scheme and Roe scheme give very similar results, which are the best compared with those from Van Leer scheme and Liou–Steffen's advection upstream splitting method (AUSM) scheme. For the multidimensional transonic flows, the sharp monotone normal shock wave profiles with mostly one transition zone are obtained. The results are compared with those from Van Leer scheme, AUSM and also with the experiment.  相似文献   

13.
The AUFS scheme has been presented for solving the Euler equations [Sun, M., Takayama, K., 2003. An artificially upstream flux vector splitting scheme for the Euler equations. Journal of Computational Physics, 189, 305–329]. An extension of this high resolution scheme-based on upwind numerical methods has been developed to calculate a two-dimensional hypersonic viscous flowfield in thermochemical non-equilibrium. The time-dependent Navier–Stokes governing equations are computed by using a multi-block finite volume technique on a structured mesh. The convective fluxes at the interfaces are evaluated using a flux vector splitting (FVS) method with a second-order reconstruction of the interface values and the viscous terms are discretised by second-order central differences. A better evaluation of aerodynamic parameters are obtained with this AUFS scheme and they are also compared to those obtained by previous works. The freestream flow conditions of these computations correspond to high-enthalpy flows with a Mach number range between 6.4 and 25.9. The obtained numerical results indicate that the AUFS scheme is accurate, robust, and efficient for the calculation of hypersonic flow.  相似文献   

14.
SUMMARY

The influence of the choice of transport and chemical models on the numerical simulation of hypersonic flows in chemical non-equilibrium is investigated. A coupled Euler/boundary layer method is employed, which facilitates the incorporation of different models and simplifies the calculation of the resulting flowfields. By considering hypersonic flows with different freestream conditions, it is shown that for flows dominated by chemical reactions, the computed flowfields can be sensitive to the choice of model. This sensitivity must be taken into account when defining test cases for the validation of numerical simulations of hypersonic re-entry flows.  相似文献   

15.
A numerical method for two-phase flow with hydrodynamics behavior was considered. The nonconservative hyperbolic governing equations proposed by Saurel and Gallout were adopted. Dissipative effects were neglected but they could be included in the model without major difficulties. Based on the opinion proposed by Abgrall that “a two phase system, uniform in velocity and pressure at t = 0 will be uniform on the same variable during its temporal evolution“, a simple accurate and fully Eulerian numerical method was presented for the simulation of multiphase compressible flows in hydrodynamic regime. The numerical method relies on Godunov-typescheme, with HLLC and Lax-Friedrichs type approximate Riemann solvers for the resolution of conservation equations, and nonconservative equation. Speed relaxation and pressure relaxation processes were introduced to account for the interaction between the phases. Test problem was presented in one space dimension which illustrated that our scheme is accurate, stable and oscillation free.  相似文献   

16.
The gasdynamic structure of a hypersonic molecular nitrogen flow in a plane channel whose opposite surfaces are segmented electrodes for generating a continuous surface glow discharge is investigated using a two-dimensional computational model. The electrodynamic structure of the surface glow discharge in the hypersonic rarefied gas flow (distributions of the charged particle concentrations, current density, and electric potential) is studied. A two-dimensional conjugate electrical-gasdynamic model consisting of the continuity, Navier-Stokes, and energy conservation equations and the chargedparticle continuity equations in the ambipolar approximation is proposed. The real thermophysical and transport properties of molecular nitrogen are taken into account. It is shown that using a surface glow discharge in a hypersonic rarefied gas flow makes it possible effectively to modify the shock-wave flow structure and hence to consider this type of discharge as additional tool for controlling rarefied gas flows.  相似文献   

17.
A study of viscous and inviscid hypersonic flows using generalized upwind methods is presented. A new family of hybrid flux-splitting methods is examined for hypersonic flows. The hybrid method is constructed by the superposition of the flux-vector-splitting (FVS) method and second-order artificial dissipation in the regions of strong shock waves. The conservative variables on the cell faces are calculated by an upwind extrapolation scheme to third-order accuracy. A second-order-accurate scheme is used for the discretization of the viscous terms. The solution of the system of equations is achieved by an implicit unfactored method. In order to reduce the computational time, a local adaptive mesh solution (LAMS) method is proposed. The LAMS method combines the mesh-sequencing technique and local solution of the equations. The local solution of either the Euler or the NAVIER-STOKES equations is applied for the region of the flow field where numerical disturbances die out slowly. Validation of the Euler and NAVIER-STOKES codes is obtained for hypersonic flows around blunt bodies. Real gas effects are introduced via a generalized equation of state.  相似文献   

18.
绕Apollo飞船的高超声速化学非平衡流动的数值模拟   总被引:5,自引:3,他引:5  
利用混合通量分裂方法,建立了很方便求解的隐式NND格式,求解了完全气体和化学非平衡空气绕Apollo飞船的流动,计算结果和实验值作了比较,应用拓扑分析方法,研究了背风区和尾迹内的流动结构。  相似文献   

19.
Cover Image     
A simple, robust, and accurate HLLC-type Riemann solver for the compressible Euler equations at various Mach numbers is built. To cure shock instability of the HLLC solver at strong shocks, a pressure-control technique, which plays a role in limiting the propagation of erroneous pressure perturbation, is proposed. With an all Mach correction method for the compressible Euler system, the proposed method is further extended to compute flow problems at low Mach numbers. The proposed all Mach HLLC-type scheme has been implemented and used to compute a variety of flow problems ranging from hypersonic compressible to low Mach incompressible flow regimes. Various numerical results demonstrate that the obtained all Mach HLLC-type scheme is both accurate and stable for all speed ranges.  相似文献   

20.
This paper deals with a numerical solution of compressible flows. In the case of Euler equations, a numerical solver is presented on a structured quadrilateral grid. The Advection Upstream Splitting Method (AUSM) scheme is used and the spatial accuracy is improved by linear reconstruction with slope limiters. The influence of those limiters are then tested in cases of transonic flow through a channel and a blade cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号