首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The adsorption energetics of NO and CO on Pt(111) are studied using an ab initio embedding theory. The Pt(111) surface is modeled as a three-layer, 28-atom cluster with the Pt atoms fixed at bulk lattice sites. Molecular NO is adsorbed at high symmetry sites on Pt(111), with the fcc threefold site energetically more favorable than the hcp threefold and bridge sites. The calculated adsorption energy at the fcc threefold site is 1.90 eV, with an N-surface distance of 1.23 Å. The NO molecular axis is perpendicular to the Pt(111) surface. Tilting the O atom away from the surface normal destablizes adsorbed NO at all adsorption sites considered. On-top Pt adsorption has been ruled out. The Pt(111) potential surface is very flat for CO adsorption, and the diffusion barriers from hcp to fcc sites are 0.03 eV and less than 0.06 eV across the bridge and the atop sites, respectively. Calculated adsorption energies are 1.67, 1.54, 1.51, and 1.60 eV at the fcc threefold, hcp threefold, bridge, and atop sites, respectively. Calculated C-surface distances are 1.24 Å at the fcc threefold site and 1.83 Å at the atop site. It is concluded that NO and CO adsorption energetics and geometries are different on Pt(111).  相似文献   

2.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

3.
甲醇在Pt-Mo(111)/C表面上的吸附   总被引:1,自引:0,他引:1  
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Mo(111)/C表面的顶位、穴位和桥位共计9种吸附模型进行了构型优化、能量计算和频率分析, 结果表明top-Pt位是较有利的吸附位. Mo掺杂后价带与导带位置均有不同程度的降低, 电子结构的变化使得Pt-Mo(111)/C的催化活性提高. 并且在考虑催化剂抗中毒性能时发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Mo(111)/C上的吸附能比甲醇的要低, 说明CO在Pt(111)/C面上的吸附会阻碍甲醇的吸附, 并影响催化过程的进行, 而Pt-Mo(111)/C的抗CO中毒化能力增强, 是催化氧化甲醇较好的催化剂.  相似文献   

4.
采用密度泛函理论,对Pt(111)和Pt3Ni(111)表面上CO和O的单独吸附、共吸附以及CO的氧化反应进行了系统的研究. 结果表明, Pt3Ni(111)表面上CO的吸附弱于Pt(111)表面, O的吸附明显强于Pt(111)表面. 两个表面表现出相似的CO催化氧化活性. 表面Ni的存在不但稳定了O的吸附,同时也降低了过渡态O的能量.  相似文献   

5.
甲醇在Pt-Fe(111)/C表面吸附的理论研究   总被引:1,自引:0,他引:1  
王译伟  李来才  田安民 《化学学报》2008,66(22):2457-2461
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Fe(111)/C表面top, fcc, hcp和bridge位的吸附模型进行了构型优化、能量计算, 结果表明bridge位是较有利的吸附位. 掺杂后费米能级的位置发生了右移, 价带和导带均增宽, 极利于电子-空穴的迁移, 这对提高催化活性是非常有利的. 考察抗中毒性发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Fe(111)/C的吸附能比甲醇吸附能要低, 可说明CO在Pt(111)/C面上有中毒效应, 而Pt-Fe(111)/C的抗CO中毒能力增强, 是催化氧化甲醇良好的催化剂.  相似文献   

6.
刘金尧 《分子催化》1997,11(1):50-54
Pt(111)表面上一氧化碳的吸附与氧化反应1)刘金尧(清华大学一碳化工国家重点实验室北京100084)XuMZaeraF(DepartmentofChemistryUniversityofCaliforniaRiversideCA92521)关键词...  相似文献   

7.
The adsorption of CO on Fe, Pt and Co clusters was modeled by the DFT approach using the B3LYP and the BPW91 functionals together with the LANL2DZ and the 6-31G(d) basis set. These calculations show that although CO adsorbs more strongly on Pt than on either Fe or Co, the dissociation energy on Fe and on Co is lower than the corresponding dissociation energy on Pt. Therefore, the activation energy for dissociation is not determined by the adsorption energy. Additionaly, the CO bond distances also do not show any correlation to the adsorption energy.  相似文献   

8.
采用周期平板模型, 结合密度泛函理论对HCOOH和CO在Pt-Sn(111)/C表面的top、brigde、hcp和fcc共计8个位点的吸附模型进行构型优化和能量计算, 并对吸附前后的频率、电荷、能带和态密度进行了研究. 计算结果表明fcc-Pt3是较为有利的吸附位点, Sn掺杂之后费米能级右移, 导带增宽, 价带和导带的位置略微降低, 合金表面电子结构变化利于甲酸的吸附解离催化, 可使甲酸燃料电池阳极催化性能显著提高. 通过催化剂表面的抗中毒分析, 发现CO在Pt-Sn(111)/C表面的吸附能以两种趋势下降, 阳极催化剂掺杂改性后抗CO中毒能力增强.  相似文献   

9.
运用电化学循环伏安和程序电位阶跃方法研究了阴离子特性吸附和Pt(111)电极表面结构对乙二醇解离吸附反应动力学的影响. 结果表明, 阴离子特性吸附显著影响乙二醇的解离吸附, 在高氯酸介质中(无特性吸附)测得乙二醇解离吸附反应的初始速率vi以及解离吸附物种(DA)的饱和覆盖度均明显大于硫酸溶液(发生SO2-4/HSO-4特性吸附)中的相应值; 其平均速率v随电极电位的变化呈类似火山型分布, 最大值位于0.22 V(vs SCE)附近. 还发现通过不同处理获得的Pt(111)电极的不同表面结构对这一表面过程也具有显著的影响.  相似文献   

10.
The adsorption of formaldehyde (HCHO) on Pt(111) and Pt(100) electrodes was examined by cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM) in 0.1 M HClO(4). The extent of HCHO adsorption at both Pt electrodes was evaluated by comparing the CVs, particularly for the hydrogen adsorption and desorption between 0.05 and 0.4 V, obtained in 0.1 M HClO(4) with and without HCHO. The adsorption of HCHO on these Pt electrodes was significant only when [HCHO] >/= 10 mM. Adsorbed organic intermediate species acted as poisons, blocking Pt surfaces and causing delays in the oxidation of HCHO. Compared to Pt(111), Pt(100) was more prone to poisoning, as indicated by a 200 mV positive shift of the onset of HCHO oxidation. However, Pt(100) exhibited an activity 3 times higher than that of Pt(111), as indicated by the difference in peak current density of HCHO oxidation. Molecular resolution STM revealed highly ordered structures of Pt(111)-( radical7 x radical7)R19.1 degrees and Pt(100)-( radical2 x radical2) in the potential region between 0.1 and 0.3 V. Voltammetric measurements further showed that the organic poisons produced by HCHO adsorption behaved differently from the intentionally dosed CO admolecules, which supports the assumption for the formation of HCO or COH adspecies, rather than CO, as the poison. On both Pt electrodes, HCHO oxidation commenced preferentially at step sites at the onset potential of this reaction, but it occurred uniformly at the peak potentials.  相似文献   

11.
利用密度泛函理论研究了Pt(111)面及Pt14团簇对肉桂醛(CAL)的吸附作用和不完全加氢的反应机理。分析吸附能结果表明,肉桂醛分子以C=O与C=C键协同吸附在Pt(111)面上的六角密积(Hcp)位最稳定,以C=C键吸附在Pt14团簇上最稳定,且在Pt14团簇上的吸附作用较Pt(111)面更强。由过渡态搜索并计算得到的反应能垒及反应热可知,肉桂醛在Pt(111)面和Pt14团簇上均较容易对C=O键加氢得到肉桂醇(COL)。其中,优先加氢O原子为最佳反应路径,即Pt无论是平板还是团簇对肉桂醛加氢均有较好的选择性。同时发现,肉桂醛分子在Pt(111)面的加氢反应能垒较Pt14团簇上更低,即Pt的催化活性及对肉桂醛加氢产物选择性与其结构密切相关,其中,Pt(111)面对生成肉桂醇更加有利。  相似文献   

12.
The density functional theory(DFT) and self-consistent periodic calculation were used to investigate the methanol adsorption on the Pt-Mo(111)/C surface.The adsorption energies,equilibrium geometries and vibration frequencies of CH3OH on nine types of sites on the Pt-Mo(111)/C surface were predicted and the favorite adsorption site for methanol is the top-Pt site.Both sites of valence and conduction bands of doped system have been broadened,which are favorable for electrons to transfer to the cavity.The possible decomposition pathway was investigated with transition state searching and the calculation results indicate that the O-H bond is first broken,and then the methanol decomposes into methoxy.The activation barrier of O-H bond breaking with Pt-Mo catalyst is only 104.8 kJ mol-1,showing that carbon supported Pt-Mo alloys have promoted the decomposition of methanol.Comparing with the adsorption energies of CH3OH on the Pt(111)/C surface and that of CO,the adsorption energies of CO are higher,and Pt(111)/C is liable to be oxidized and loses the activity,which suggests that the catalyst Pt-Mo(111)/C is in favor of decomposing methanol and has better anti-poisoning ability than Pt(111)/C.  相似文献   

13.
Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys   总被引:1,自引:0,他引:1  
Self-consistent periodic density functional theory calculations (GGA-PW91) have been performed to study the adsorption of O and O(2) and the dissociation of O(2) on the (111) facets of ordered Pt(3)Co and Pt(3)Fe alloys and on monolayer Pt skins covering these two alloys. Results are compared with those obtained on two Pt(111) surfaces, one at the equilibrium lattice constant and the other laterally compressed by 2% to match the strain in the Pt alloys. The absolute magnitudes of the binding energies of O and O(2) follow the same order in the two alloy systems: Pt skin < compressed Pt(111) < Pt(111) < Pt(3)Co(111) or Pt(3)Fe(111). The reduced activity of the compressed Pt(111) and Pt skins for oxygen can be rationalized as being due to the shifting of the d-band center increasingly away from the Fermi level. We propose that an alleviation of poisoning by O and enhanced rates for reactions involving O may be some of the reasons why Pt skins are more active for the oxygen reduction reaction in low-temperature fuel cells. Finally, a linear correlation between the transition-state and final-state energies of O(2) dissociation on monometallic and bimetallic surfaces is revealed, pointing to a simple way to screen for improved cathode catalysts.  相似文献   

14.
Reaction kinetics studies were conducted for the conversions of ethanol and acetic acid over silica-supported Pt and Pt/Sn catalysts at temperatures from 500 to 600 K. Addition of Sn to Pt catalysts inhibits the decomposition of ethanol to CO, CH4, and C2H6, such that PtSn-based catalysts are active for dehydrogenation of ethanol to acetaldehyde. Furthermore, PtSn-based catalysts are selective for the conversion of acetic acid to ethanol, acetaldehyde, and ethyl acetate, whereas Pt catalysts lead mainly to decomposition products such as CH4 and CO. These results are interpreted using density functional theory (DFT) calculations for various adsorbed species and transition states on Pt(111) and Pt3Sn(111) surfaces. The Pt3Sn alloy slab was selected for DFT studies because results from in situ (119)Sn M?ssbauer spectroscopy and CO adsorption microcalorimetry of silica-supported Pt/Sn catalysts indicate that Pt-Sn alloy is the major phase present. Accordingly, results from DFT calculations show that transition-state energies for C-O and C-C bond cleavage in ethanol-derived species increase by 25-60 kJ/mol on Pt3Sn(111) compared to Pt(111), whereas energies of transition states for dehydrogenation reactions increase by only 5-10 kJ/mol. Results from DFT calculations show that transition-state energies for CH3CO-OH bond cleavage increase by only 12 kJ/mol on Pt3Sn(111) compared to Pt(111). The suppression of C-C bond cleavage in ethanol and acetic acid upon addition of Sn to Pt is also confirmed by microcalorimetric and infrared spectroscopic measurements at 300 K of the interactions of ethanol and acetic acid with Pt and PtSn on a silica support that had been silylated to remove silanol groups.  相似文献   

15.
采用密度泛函理论计算研究了碱性介质中甲醇在清洁的PtAu(111)和Pt(111)表面、及有CO存在的PtAu(111)和Pt(111)表面的氧化。计算结果表明,在碱性介质中,预吸附的CO促进了甲醇在PtAu(111)和Pt(111)表面氧化的每一步反应,这与其在Au(111)表面的作用相似。究其原因,是由于CO的吸附增强了OH的稳定性和碱性,从而增强了OH夺取氢原子的能力。  相似文献   

16.
Mo(CO)6 adsorption on the clean, oxygen-precovered and deeply oxidized Si(111) surfaces was comparatively investigated by high-resolution electron energy loss spectroscopy. The downward vibrational frequency shift of the C-O stretching mode in adsorbed Mo(CO)6 illustrates that different interactions of adsorbed Mo(CO)6 occur on clean Si(111) and SiO2/Si(111) surfaces, weak on the former and strong on the latter. The strong interac-tion on SiO2/Si(111) might lead to the partial dissociation of Mo(CO)6, consequently the formation of molybdenum subcarbonyls. Therefore, employing Mo(CO)6 as the precursor, metallic molybdenum could be successfully deposited on the SiO2/Si(111) surface but not on the clean Si(111) surface. A portion of the deposited metallic molybdenum is transformed into the MoO3 on the SiO2/Si(111) surface upon heating, and the evolved MoO3 finally desorbs from the substrate upon annealing at elevated temperatures.  相似文献   

17.
The adsorption of CO on Pt group metals, as a most fundamental elementary reaction step, has been widely studied in catalysis and electrocatalysis. Particularly, the structures of CO on Pt(111) have been extensively investigated, owing to its importance to both fundamental and applied catalysis. Yet, much less is known regarding CO adsorption on a Pt(111) surface modulated by supported oxide nanostructures,which is of more relevance to technical catalysis. We thus investigated the coverage-dependent adsorption of CO on a Pt(111) surface partially covered by Fe Oxnanostructures, which has been demonstrated as a remarkable catalyst for low-temperature CO oxidation. We found that, due to its strong chemisorption, the coverage-dependent structure of CO on bare Pt is not influenced by the presence of Fe Ox. But,oxygen-terminated Fe Oxnanostructures could modulate the diffusivity of CO at their vicinity, and thus affect the formation of ordered CO superstructures at low temperatures. Using scanning tunneling microscopy(STM), we inspected the diffusivity of CO, followed the phase transitions of CO domains, and resolved the molecular details of the coverage-dependent CO structures. Our results provide a full picture for CO adsorption on a Pt(111) surface modulated by oxide nanostructures and shed lights on the inter-adsorbate interaction on metal surfaces.  相似文献   

18.
The adsorption of CO on the surface of metals such as Pt(111) is of great interest owing to the industrial importance of the catalytic oxidation of pollutant CO. To date, reliable high-level calculations of this process have not been possible, a situation often referred to as the "CO/Pt(111) puzzle". Standard generalized-gradient-approximation density functional theory approaches fail to capture key details of the binding, such as the location of the adsorption site, while cluster approaches using alternative methods show some but insufficient improvement. Using a new computational methodology combining hybrid density functionals containing non-local Hartree-Fock exchange with periodic imaging plane-wave-based techniques, we demonstrate that key aspects of the adsorption of CO on Pt(111), including the identification of the absorption site and CO frequency change, can now be adequately modeled. The binding is dominated by both CO dative covalent bonding and metal-to-molecule pi back-bonding, effects requiring realistic alignment of both the molecular HOMO and LUMO orbitals with respect to the metal Fermi energy.  相似文献   

19.
We present here a first principles density functional theory investigation of the reactivity of Pt(111)-skin catalysts, which are varied from surface alloys with Ni to bulk PtxNi 1-x (x=0.25,0.50,0.75) alloys. Molecule (CO, O, and H) adsorption and oxidation of CO+O and H+O reactions were studied and analyzed in detail. Independent of the adsorbates, the interaction between adsorbates and substrates becomes weakened with increase in Ni, due to the downshift of d-band center of surface Pt atoms. Moreover, activation barriers of CO and H oxidation toward atomic oxygen gradually decrease. In term of CO preferential oxidation (PROX) in excess of hydrogen, it turns out that the overall reactivity and selectivity rely on the optimum of various elementary steps involved such as competitive molecular (dissociative) adsorption and oxidation reaction. The present calculations show that Pt3Ni(111) with Pt overlayer is an optimum catalyst for CO PROX in excess of hydrogen.  相似文献   

20.
Structural effects on intermediate species of methanol oxidation are studied on low-index planes of platinum using in-situ infrared (IR) spectroscopy. A flow cell is designed for rapid migration of reactant and product species on the electrode surface. IR spectra show adsorption of formate and the formation of carbonate species on the Pt(111) surface at potentials higher than that of CO oxidation. The band assignments for carbonate and formate are confirmed by vibrational isotope shifts. On Pt(100), the absorption band of adsorbed formate is much smaller than that on Pt(111). On the other hand, there is no adsorbed formate on Pt(110) in the potential region examined. The band intensity of formate follows the order: Pt(111)>Pt(100)>Pt(110). This order is opposite to that of the current density in the regions of higher potential. Adsorbed formate on Pt(111) behaves like a catalyst-poisoning intermediate, like adsorbed CO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号