首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Novel nickel‐copper modified pencil graphite electrode (Ni?Cu/PGE) was fabricated and used as non‐enzymatic sensor for glucose determination. Ni and copper were electrodeposited on PGE using cyclic voltammetry. Morphology and composition of the modified PGE electrode were characterized by field‐emission gun scanning electron microscopy (FEG‐SEM), energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT‐IR). Electrochemical oxidation of glucose was evaluated by cyclic voltammetry as well as by amperometry. Electrochemical measurements indicate that the Ni?Cu/PGE exhibits a high sensitivity of 2951 μA mM?1 cm?2, and a low detection limit of 0.99 μM which are, respectively, three times higher and twice lower than that on Ni/PGE prepared in the same conditions. Moreover, Ni?Cu/PGE exhibits a wider linear range from 1 to 10000 μM with a rapid response time within 2 s. Moreover, Ni?Cu/PGE showed a remarkable stability. The electrode was successfully applied for determination of glucose concentration in human blood without significant interference from potential endogenic interferents. The good applicability of the elaborated sensor made Ni?Cu/PGE promising for the development of effective and inexpensive non‐enzymatic glucose sensor.  相似文献   

2.
At present, a highly sensitive hydrogen peroxide (H2O2) sensor is fabricated by ferrocene based naphthaquinone derivatives as 2,3‐Diferrocenyl‐1,4‐naphthoquinone and 2‐bromo‐3‐ferrocenyl‐1,4‐naphthoquinone. These ferrocene based naphthaquinone derivatives are characterized by H‐NMR and C‐NMR. The electrochemical properties of these ferrocene based naphthaquinone are investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) on modified glassy carbon electrode (GCE). The modified electrode with ferrocene based naphthaquinone derivatives exhibits an improved voltammetric response to the H2O2 redox reaction. 2‐bromo‐3‐ferrocenyl‐1,4‐naphthoquinone show excellent non‐enzymatic sensing ability towards H2O2 response with a detection limitation of 2.7 μmol/L a wide detection range from 10 μM to 400 μM in H2O2 detection. The sensor also exhibits short response time (1 s) and good sensitivity of 71.4 μA mM?1 cm?2 and stability. Furthermore, the DPV method exhibited very high sensitivity (18999 μA mM?1 cm?2) and low detection limit (0.66 μM) compared to the CA method. Ferrocene based naphthaquinone derivative based sensors have a lower cost and high stability. Thus, this novel non‐enzyme sensor has potential application in H2O2 detection.  相似文献   

3.
Non‐enzymatic glucose sensor is greatly expected to take over its enzymatic counterpart in the future. In this paper, we reported on a facile strategy to construct a non‐enzymatic glucose sensor by use of NiCo2O4 hollow nanocages (NiCo2O4 HNCs) as catalyst, which was derived from Co‐based zeolite imidazole frame (ZIF‐67). The NiCo2O4 HNCs modified glassy carbon electrode (NiCo2O4 HNCs/GCE), the key component of the glucose sensor, showed highly electrochemical catalytic activity towards the oxidation of glucose in alkaline media. As a result, the proposed non‐enzymatic glucose sensor afforded excellent analytical performances assessed with the aid of cyclic voltammetry and amperometry (i–t). A wide linear range spanning from 0.18 μΜ to 5.1 mM was achieved at the NiCo2O4 HNCs/GCE with a high sensitivity of 1306 μA mM?1 cm?2 and a fast response time of 1 s. The calculated limit of detection (LOD) of the sensor was as low as 27 nM (S/N=3). Furthermore, it was demonstrated that the non‐enzymatic glucose sensor showed considerable anti‐interference ability and excellent stability. The practical application of the sensor was also evaluated by determination of glucose levels in real serum samples.  相似文献   

4.
Nitrogen‐doped hollow cobalt oxide nanofibers (Co3O4 NFs) with both glucose catalytic activity and pH sensitivity were fabricated through core‐sheath electrospinning technique, followed by calcination. The as‐developed nitrogen‐doped hollow Co3O4 NFs were thoroughly characterized using various techniques, and then employed to fabricate a dual electrochemical sensor for both pH sensing and glucose sensing. The pH sensitivity of the developed nitrogen‐doped hollow Co3O4 NFs demonstrated a Nernst constant of 12.9–15.9 mV/pH in the pH range of 3.0~9.0 and 6.8–10.7 mV/pH in the pH range of 9.0~13.0, respectively. The developed hollow cobalt oxides nanofibers sensor also possesses glucose sensitivity of 87.67 μA mM?1 cm?2, the limit of detection of 0.38 μM (S/N=3), and an acceptable selectivity against several common interferents in non‐enzymatic glucose determination. High accuracy for monitoring glucose in human serum sample was also demonstrated. These features indicate that the as‐synthesized nitrogen‐doped hollow cobalt oxides nanofibers hold great potential in the development of a unique dual sensor for both solid‐state pH sensing and superior non‐enzymatic glucose sensing.  相似文献   

5.
A non‐enzyme photoelectrochemical (PEC) glucose sensor based on α‐Fe2O3 film is investigated. The α‐Fe2O3 film was fabricated via a simple spin coating method. The proposed glucose sensor exhibits good selectivity, a fast response time of <5 s, a linear range of 0.05 to 6.0 mM, sensitivity of 17.23 μA mM?1 cm?2 and a detection limit of 0.05 μM. Meanwhile, the excellent performances of the α‐Fe2O3 sensor were obtained in reproducibility and the long‐term stability under ambient condition. The linear amperometric response of the sensor covers the glucose levels in physiological and clinical for diabetic patients. Therefore, this non‐enzyme PEC sensor based on α‐Fe2O3 film has a great potential application in the development of glucose sensors.  相似文献   

6.
In this study, a laser‐induced graphene (LIG) loaded platinum nanoparticles (PtNPs) was prepared for precise, rapid and non‐enzymatic electrochemical detection of hydrogen peroxide (H2O2). The commercial PI films were used as the substrate of LIG. In order to improve the electrochemical performance of LIG, a layer of PtNPs catalyst was fabricated through a magnetron sputtering process on the surface of LIG (PtLIG). Under optimized conditions, a linear relationship between H2O2 reduction current and H2O2 concentration was recorded, the correlation coefficient R2 is 0.9919 with the detection limit of 0.1 μM (S/N=3) and the sensitivity of 248.4 μA mM?1cm?2. Moreover, the PtLIG exhibits excellent selectivity, reproducibility and repeatability. Because of these remarkable advantages, we believe that PtLIG will provide a wider range of applications in biosensors and bioelectronic devices.  相似文献   

7.
Nanostructured NiS thin film was prepared by a one‐step electrodeposition method and the structural, morphological characteristics of the as‐prepared films were analyzed by X‐ray diffractometry (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X‐ray analysis (EDAX). The electrocatalytic activity of NiS thin film towards glucose oxidation was investigated by fabricating a non‐enzymatic glucose sensor and the sensor performance was studied by cyclic voltammetry (CV) and amperometry. The fabricated sensor showed excellent sensitivity and low detection limit with values of 7.43 μA μM ?1 cm?2 and 0.32 μM , respectively, and a response time of <8 s.  相似文献   

8.
Urchin‐like Ag nanowires were prepared by reacting AgNO3(aq) with Cu metal in the presence of cetyltrimethylammonium chloride and HNO3(aq) on a screen printed carbon electrode at room temperature. The diameters of the nanowires were about 100 nm, while the lengths were up to 10 μm. Cyclic voltammetric experiments using the Ag nanowires as the working electrode showed electrocatalytic H2O2 reduction. The electrode exhibited a high sensitivity of 4705 μA mM‐1 mg‐1 cm‐2 from 50 μM to 10.35 mM and a measurable detection limit of 10 μM in amperometric detection. This is the first report on Ag NWs for non‐enzymatic H2O2 sensing.  相似文献   

9.
《中国化学》2017,35(8):1317-1321
A novel non‐enzymatic nitrite sensor was fabricated by immobilizing MnOOH‐PANI nanocomposites on a gold electrode (Au electrode). The morphology and composition of the nanocomposites were investigated by transmission electron microscopy (TEM ) and Fourier transform infrared spectrum (FTIR ). The electrochemical results showed that the sensor possessed excellent electrocatalytic ability for NO2 oxidation. The sensor displayed a linear range from 3.0 μmol•L−1 to 76.0 mmol•L−1 with a detection limit of 0.9 μmol•L−1 (S/N = 3), a sensitivity of 132.2 μA •L•mol−1•cm−2 and a response time of 3 s. Furthermore, the sensor showed good reproducibility and long‐term stability. It is expected that the MnOOH‐PANI nanocomposites could be applied for more active sensors and used in practice for nitrite sensing.  相似文献   

10.
A poly(2‐aminophenylbenzimidazole)/gold nanoparticles (P2AB/AuNPs) coated disposable pencil graphite electrode (PGE) was fabricated as an enzyme‐free sensor for the H2O2 determination. P2AB/AuNPs and P2AB were successfully synthesized electrochemically on PGE in acetonitrile for the first time. The coatings were characterized by scanning electron microscopy, X‐ray diffraction spectroscopy, Energy‐dispersive X‐ray spectroscopy, Surface‐enhanced Raman spectroscopy, and UV‐Vis spectroscopy. AuNPs interacted with P2AB as carrier enhances the electrocatalytic activity towards reduction of H2O2. The analytical performance was evaluated in a 100 mM phosphate buffer solution at pH 6.5 by amperometry. The steady state current vs. H2O2 concentration is linear in the range of 0.06 to 100 mM (R2=0.992) with a limit of detection 3.67×10?5 M at ?0.8 V vs. SCE and no interference is caused by ascorbic acid, dopamine, uric acid, and glucose. The examination for the sensitive determination of H2O2 was conducted in commercially available hair oxidant solution. The results demonstrate that P2AB/AuNPs/PGE has potential applications as a sensing material for quantitative determination of H2O2.  相似文献   

11.
A novel non‐enzymatic sensor based on Ag/MnOOH nanocomposites was developed for the detection of hydrogen peroxide (H2O2). The H2O2 sensor was fabricated by immobilizing Ag/MnOOH nanocomposites on a glassy carbon electrode (GCE). The morphology and composition of the sensor surface were characterized using scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy and X‐ray diffraction spectroscopy. The electrochemical investigation of the sensor indicates that it possesses an excellent electrocatalytic property for H2O2, and could detect H2O2 in a linear range from 5.0 µM to 12.8 mM with a detection limit of 1.5 µM at a signal‐to‐noise ratio of 3, a response time of 2 s and a sensitivity of 32.57 µA mM?1 cm?2. Additionally, the sensor exhibits good anti‐interference. The good analytical performance, low cost and straightforward preparation method made this novel electrode material promising for the development of effective non‐enzymatic H2O2 sensor.  相似文献   

12.
A novel flower like 3D nickel/manganese dioxide (Ni/MnO2) nanocomposite was synthesized by a kind of simple electrochemical method and the formation mechanism of flower like structure was also researched. In addition, morphology and composition of the nanocomposite were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). Then the Ni/MnO2 nanocomposites were applied to fabricate electrochemical non‐enzymatic glucose sensor. The electrochemical investigation for the sensor indicated that it possessed an excellent electrocatalytic property for glucose, and could applied to the quantification of glucose with a linear range from 2.5×10?7 to 3.5×10?3 M, a sensitivity of 1.04 mA mM?1 cm?2, and a detection limit of 1×10?7 M (S/N=3). The proposed sensor also presented attractive features such as interference‐free, and long‐term stability. The present study provided a general platform for the one‐step synthesis of nanomaterials with novel structure and can be extended to other optical, electronic and magnetic nanocompounds.  相似文献   

13.
Novel CuO thin films composed of porous nanosheets were in situ formed on indium tin oxide (ITO) by a simple, low temperature solution method, and used as working electrodes to construct nonenzymatic glucose sensor after calcinations. Cyclic voltammetry revealed that the CuO/ITO electrode calcinated at 200 °C exhibited better electrocatalytic activity for glucose. For the amperometric glucose detection, such prepared electrode showed low operating potential of 0.35 V and high sensitivity of 2272.64 μA mM?1 cm?2. Moreover, the CuO/ITO electrode also showed good stability, reproducibility and high anti‐interference ability. Thus, it is a promising material for the development of non‐enzymatic glucose sensors.  相似文献   

14.
《Electroanalysis》2018,30(3):474-478
A non‐enzymatic electrochemical glucose sensor based on a Cu‐based metal‐organic framework (Cu‐MOF) modified electrode was developed. The Cu‐MOF was prepared by a simple ionothermal synthesis, and the characterizations of the Cu‐MOF were studied by Fourier transform infrared spectroscopy (FT‐IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single‐crystal X‐ray powder diffraction (SCXRD), and X‐ray powder diffraction (XRD). Electrochemical behaviors of the Cu‐MOF modified electrode to glucose were measured by differential pulse voltammetry (DPV). The electrochemical results showed that the Cu‐MOF modified electrode exhibited an excellent electro‐catalytic oxidation towards glucose in the range of 0.06 μM to 5 mM with a sensitivity of 89 μA/mM cm2 and a detection limit of 10.5 nM. Moreover, the fabricated sensor showed a high selectivity to the oxidation of glucose in coexistence with other interferences. The sensor was satisfactorily applied to the determination of glucose in urine samples. With the significant electrochemical performances, MOFs may provide a suitable platform in the construction of kinds of electrochemical sensors and/or biosensors and hold a great promise for sensing applications.  相似文献   

15.
Nitrogen and phosphorus co‐doped hierarchical micro/mesoporous carbon (N,P‐MMC) was prepared by simple thermal treatment of freeze‐dried okra in the absence of any other additives. The 0.96 wt % of N and 1.47 wt % of P were simultaneously introduced into the graphitic framework of N,P‐MMC, which also possesses hierarchical porous structure with mesopores centered at 3.6 nm and micropores centered at 0.79 nm. Most importantly, N,P‐MMC carbon exhibits excellent catalytic activity for electrocatalytic reduction of H2O2, resulting in a new strategy to construct non‐enzymatic H2O2 sensor. The N,P‐MMC‐based H2O2 sensor displays two linear detection range about 0.1 mM–10 mM (R2=0.9993) and 20 mM–200 mM (R2=0.9989), respectively. The detection limit is estimated to be 6.8 μM at a signal‐to‐noise ratio of 3. These findings provide insights into synthesizing functional heteroatoms doped porous carbon materials for biosensing applications.  相似文献   

16.
A novel non‐enzymatic glucose sensor based on nickel hydroxide and intercalated graphene with ionic liquid (G‐IL) nanocomposite modified glass carbon electrode was fabricated. Scanning electron microscope, Fourier transform infrared spectra and energy dispersive X‐ray spectroscopy of the nanocomposite confirmed the morphology and ingredient of Ni(OH)2 as well as G‐IL. Moreover, experimental results of cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry indicated the sensing properties of Ni(OH)2 at Ni(OH)2/G‐IL modified electrode towards the typical electrocatalytic oxidation process of glucose at 0.43 V in 0.10 M NaOH. The current response was linearly related to glucose concentration in a range from 0.5 to 500 μM with a detection limit of 0.2 μM (S/N = 3) and sensitivity of 647.8 μA mM?1 cm?2. The response time of the sensor to glucose was less than 2 s. This work may be expected to develop an excellent electrochemical sensing platform of G‐IL as a catalysis carrier.  相似文献   

17.
In this study, a novel non‐enzymatic hydrogen peroxide (H2O2) sensor was fabricated based on gold nanoparticles/carbon nanotube/self‐doped polyaniline (AuNPs/CNTs/SPAN) hollow spheres modified glassy carbon electrode (GCE). SPAN was in‐site polymerized on the surface of SiO2 template, then AuNPs and CNTs were decorated by electrostatic absorption via poly(diallyldimethylammonium chloride). After the SiO2 cores were removed, hollow AuNPs/CNTs/SPAN spheres were obtained and characterized by transmission electron microscopy (TEM), field‐emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). The electrochemical catalytic performance of the hollow AuNPs/CNTs/SPAN/GCE for H2O2 detection was evaluated by cyclic voltammetry (CV) and chronoamperometry. Using chronoamperometric method at a constant potential of ?0.1 V (vs. SCE), the H2O2 sensor displays two linear ranges: one from 5 µM to 0.225 mM with a sensitivity of 499.82 µA mM?1 cm?2; another from 0.225 mM to 8.825 mM with a sensitivity of 152.29 µA mM?1 cm?2. The detection limit was estimated as 0.4 µM (signal‐to‐noise ratio of 3). The hollow AuNPs/CNTs/SPAN/GCE also demonstrated excellent stability and selectivity against interferences from other electroactive species. The sensor was further applied to determine H2O2 in disinfectant real samples.  相似文献   

18.
The preparation of NiCo2S4 (NCS) nanosheets on photolithographically patterned platinum electrodes by electrodeposition was explored. The as‐prepared nanosheets were systematically characterized by field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy techniques. The NCS‐modified Pt electrode was used as a non‐enzymatic glucose sensor. The sensor response exhibited two linear regions in glucose concentration, with a limit of detection of 1.2 μm . The sensors showed that the as‐prepared NCS nanosheets have excellent electrocatalytic activity towards glucose with long stability, good reproducibility, and excellent anti‐interference properties, and thus, this material holds promise for the development of a practical glucose sensor.  相似文献   

19.
This paper reports the development and characterization of a solid state potentiometric sensor for chloride ions, based on doped polypyrrole‐graphite‐epoxy composite. The optimum mixture proportion found for polypyrrole:graphite was 60 : 40 meanwhile a 50 : 50 proportion was used for the polypyrrol+graphite:epoxy mixture. The stabilization time was approximately 16 min, while the response times varied within 2 and 23 s. The sensor displayed a sensitivity of 58 mV/decade [Cl?], and 3×10?6 M detection limit. The selectivity coefficients showed a greater selectivity to that reported for commercial‐type sensors. The statistical analysis for chlorides' determination in commercial saline serums did not show significant differences respect to data reported by the manufacturers.  相似文献   

20.
The present work reports a simple and single‐step hydrothermal synthesis of MoSe2?MoO3 composite for highly sensitive and selective electrochemical oxidation of nitrite. FESEM of the MoSe2?MoO3 hybrid revealed the formation of composite as laminated structure of different sizes piled up together as finger‐like MoSe2 bars whilst other physico‐chemical characterizations (XRD, FTIR, UV‐Vis, XPS) confirmed that co‐existence of MoO3 as a major by‐product of hydrothermal synthesis. The as‐fabricated MoSe2?MoO3 composite based nitrite sensor showed remarkable selectivity and reproducibility with <3s of response time, excellent sensitivity and detection limit of 10.84 A M?1 cm?2 (R2=0.996) and 0.1 μM, respectively, in the range of 2.5–80 μM. The obtained sensitivity can be credited to the high surface area obtained from 1T phase MoSe2 and α phase MoO3 as the sensing material. The developed sensor was effectively evaluated for electrochemical recognition of nitrite in the water samples (potable and tap water) gathered from an industrial area. This new and efficient MoSe2?MoO3 based electrode material offers a new frontier for the progress of a novel composites by simple and single‐step approach which can be used for progress of non‐enzymatic and inexpensive electrochemical sensors for a wide range of analytical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号