首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel visible‐light‐driven AgBr‐Ag‐BiOBr photocatalyst was synthesized by a facile hydrothermal method. Taking advantage of both p‐n heterojunctions and localized surface plasmon resonance, the p‐metal‐n structure exhibited a superior performance concerning degradation of methyl orange under visible‐light irradiation (λ>420 nm). A possible photodegradation mechanism in the presence of AgBr‐Ag‐BiOBr composites was proposed, and the radical species involved in the degradation reaction were investigated. HO2?/?O2? played the same important role as ?OH in the AgBr‐Ag‐BiOBr photocatalytic system, and both the electron and hole were fully used for degradation of organic pollutants. A dual role of metallic Ag in the photocatalysis was proposed, one being surface plasmon resonance and the other being an electron‐hole bridge. Due to the distinctive p‐metal‐n structure, the visible‐light absorption, the separation of photogenerated carriers and the photocatalysis efficiency were greatly enhanced.  相似文献   

2.
As a typical photocatalyst for CO2 reduction, practical applications of TiO2 still suffer from low photocatalytic efficiency and limited visible‐light absorption. Herein, a novel Au‐nanoparticle (NP)‐decorated ordered mesoporous TiO2 (OMT) composite (OMT‐Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO2 shows high photocatalytic performance for CO2 reduction under visible light. The ordered mesoporous TiO2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three‐dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO2 reduction under visible light by constructing OMT‐based Au‐SPR‐induced photocatalysts.  相似文献   

3.
An efficient method of photocatalytic degradation of methylparaben in water using Ag nanoparticles (NPs) loaded AgBr‐mesoporous‐WO3 composite photocatalyst (Ag/AgBr@m‐WO3), under visible light is presented. In this process, quantification of methylparaben in water was carried out by high‐performance liquid chromatography (HPLC) and the HPLC results showed a significant reduction of methylparaben in water due to the enhanced of photocatalytic degradation efficiency of Ag/AgBr@m‐WO3. For the material synthesis, highly ordered mesoporous‐WO3 (m‐WO3) was initially synthesized by sol–gel method and AgBr nanoparticles (NPs) were subsequently introduced in the pores of m‐WO3, and finally, the Ag nanoparticles were introduced by light irradiation. The enhanced photocatalytic degradation of methylparaben in water is attributed to the formation of surface plasmonic resonance (SPR) due to the introduction of Ag NPs on the surface of the catalyst. Also, the formation of heterojunction between AgBr and mesoporous‐WO3 in Ag/AgBr@m‐WO3 significantly inhibited the recombination of light‐induced electron‐hole pairs in the semiconductor composite. The morphological and optical characterizations of the synthesized photocatalysts (Ag/AgBr@m‐WO3) were carried out using SEM, TEM, XDR, N2 adsorption–desorption, UV‐VIS diffuse reflectance spectroscopy (DRS). Also, the photocatalytic studies using radical scavengers were carried out and the results indicated that O 2 · - is the main reactive species.  相似文献   

4.
Ag nanoparticle (NP)‐decorated MIL‐125(Ti) microspheres (Ag@MIL‐125(Ti)) were firstly fabricated via a facile hydrothermal and following photo‐reduction method. The photocatalysts were characterized using X‐ray diffraction, scanning and transmission electron microscopies, X‐ray photoelectron spectroscopy and UV–visible diffuse reflectance spectroscopy. The characterization results indicated that Ag NPs were dispersed on the surface of MIL‐125(Ti) microspheres, and the Ag NPs had a uniform diameter of about 40 nm. The composites exhibited excellent visible‐light absorption, due to the modification with the Ag NPs. The photocatalytic activity for the visible‐light‐promoted degradation of Rhodamine B was improved through the optimization of the amount of Ag loaded as a co‐catalyst, this amount being determined as 3 wt%. Additionally, studies performed using radical scavengers indicated that O2? and e? served as the main reactive species. The catalyst can be reused at least five times without significant loss of its catalytic activity. Furthermore, a photocatalytic mechanism for degradation of organics over Ag@MIL‐125(Ti) is also proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Recent improvements based on heterojunction nanocomposites have opened new possibilities in photocatalysis. In this research, an ultrasound‐assisted coprecipitation method was used to fabricate silver, zinc sulfide and reduced graphene oxide (Ag‐ZnS/rGO) nanocomposite, and characterization results indicated that 3% Ag‐ZnS spherical nanoparticles are successfully embedded in rGO matrix. The potential of the Ag‐ZnS/rGO, as a visible light active photocatalyst, was assessed through optimizing degradation of Tetracycline (TC) by response surface methodology. It was found that the photocatalytic degradation of TC increased with an increase in the amount of nanocomposite and irradiation time, whereas it decreased with increasing the initial TC concentration. Under the optimal conditions (10 mg L?1 of TC, 1.25 g L?1 of Ag‐ZnS/rGO, at pH = 7, and irradiation duration 110 min), more than 90% of the TC was degraded. The study of the mechanism of the photocatalytic process disclosed that the synergistic role of surface plasmon resonance (SPR) induced by Ag nanoparticles and p‐type semiconductor feature of rGO leads to ZnS semiconductor stimulation in the visible light region. Eventually, a pseudo‐first order kinetics model was developed based on the proposed mechanism. The obtained results highlight the role of Ag‐ZnS/rGO nanophotocatalyst toward degradation of some antibiotics under visible light.  相似文献   

6.
Graphene oxide (GO) and silver nanoparticles (Ag NPs) sequentially decorated nitrogen‐doped titania nanotube array (N‐TiO2 NTA) had been designed as visible‐light‐driven self‐cleaning surface‐enhanced Raman scattering (SERS) substrate for a recyclable SERS detection application. N‐TiO2 NTA was fabricated by anodic oxidation and then doping nitrogen treatment in ammonia atmosphere, acting as a visible‐light‐driven photocatalyst and supporting substrate. Ag/GO/N‐TiO2 NTA was prepared by decorating GO monolayer through an impregnation process and then depositing Ag NPs through a polyol process on the surface of N‐TiO2 NTA, acting as the collection of organic molecule and Raman enhancement. The SERS activity of Ag/GO/N‐TiO2 NTA was evaluated using methyl blue as an organic probe molecule, revealing the analytical enhancement factor of 4.54 × 104. Ag/GO/N‐TiO2 NTA was applied as active SERS substrate to determine a low‐affinity organic pollutant of bisphenol A, revealing the detection limit of as low as 5 × 10?7 m . Ag/GO/N‐TiO2 NTA could also achieve self‐cleaning function for a recycling utilization through visible‐light‐driven photocatalytic degradation of the adsorbed organic molecules. Ag/GO/N‐TiO2 NTA has been successfully reused for five times without an obvious decay in accuracy and sensitivity for organic molecule detection. The unique properties of this SERS substrate enable it to have a promising application for the sensitive and recyclable SERS detection of low‐affinity organic molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Melanoma is a primary reason of death from skin cancer and associated with high lethality. Photothermal therapy (PTT) has been developed into a powerful cancer treatment technique in recent years. Here, we created a low‐cost and high‐performance PTT agent, Ag@TiO2 NPs, which possesses a high photothermal conversion efficiency of ≈65 % and strong near‐infrared (NIR) absorption about 808 nm. Ag NPs were synthesized using a two‐step method and coated with TiO2 to obtain Ag@TiO2 NPs by a facile sol‐gel method. Because of the oxide, Ag@TiO2 NPs exhibit remarkable high photothermal conversion efficiencies and biocompatibility in vivo and in vitro. Cytotoxicity and therapeutic efficiency of photothermal cytotoxicity of Ag@TiO2 NPs were tested in B16‐F10 cells and C57BL/6J mice. Under light irradiation, the elevated temperature causes cell death in Ag NPs‐treated (100 μg mL?1) cells in vitro (both p<0.01). In the case of subcutaneous melanoma tumor model, Ag@TiO2 NPs (100 μg mL?1) were injected into the tumor and irradiated with a 808 nm laser of 2 W cm?2 for 1 minute. As a consequence, the tumor volume gradually decreased by NIR laser irradiation with only a single treatment. The results demonstrate that Ag@TiO2 NPs are biocompatible and an attractive photothermal agent for cutaneous melanoma by local delivery.  相似文献   

8.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

9.
Herein, Pt‐decorated TiO2 nanocube hierarchy structure (Pt‐TNCB) was fabricated by a facile solvothermal synthesis and in‐situ photodeposition strategy. The Pt‐TNCB exhibits an excellent solar‐driven photocatalytic hydrogen evolution rate (337.84 μmol h?1), which is about 37 times higher than that of TNCB (9.19 μmol h?1). Interestingly, its photocatalytic property is still superior to TNCB with post modification Pt (1 wt %) (208.11 μmol h?1). The introduction of Pt efficiently extends the photoresponse of the composite material from UV to visible light region, simultaneously boosting their solar‐driven photocatalytic performance, which attribute to the porous structure, the sub size TNCB, the SPR effect of Pt NPs and strong interaction of two components. In fact, Pt NPs can enhance collective oscillations on delocalized electrons, which is conducive to capture electrons and hinder the recombination of photogenerated electron‐hole pairs, leading to the longer lifetime of photogenerated charges. The fabrication of Pt‐TNCB photocatalyst with SPR effect may provide a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts.  相似文献   

10.
Nanocomposites of Ag/TiO2 nanowires with enhanced photoelectrochemical performance have been prepared by a facile solvothermal synthesis of TiO2 nanowires and subsequent photoreduction of Ag+ ions to Ag nanoparticles (AgNPs) on the TiO2 nanowires. The as‐prepared nanocomposites exhibited significantly improved cathodic photocurrent responses under visible‐light illumination, which is attributed to the local electric field enhancement of plasmon resonance effect near the TiO2 surface rather than by the direct transfer of charge between the two materials. The visible‐light‐driven photocatalytic performance of these nanocomposites in the degradation of methylene blue dye was also studied, and the observed improvement in photocatalytic activity is associated with the extended light absorption range and efficient charge separation due to surface plasmon resonance effect of AgNPs.  相似文献   

11.
In recent years, tremendous research efforts have been made towards developing metal–organic framework (MOF)‐based composites for photocatalytic applications. In this work, bipyramid‐like MIL‐125(Ti) frustum enwrapped with reduced graphene oxide (rGO) and dispersed silver nanoparticles (Ag NPs) was fabricated using an efficient one‐pot self‐assembly and photoreduction strategy. The as‐obtained materials were characterized using field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, nitrogen adsorption–desorption isotherms, and X‐ray photoelectron, ultraviolet–visible diffuse reflectance and photoluminescence spectroscopies. It is found that the as‐prepared Ag/rGO/MIL‐125(Ti) ternary hybrids have large surface area, microporous structure, enhanced visible light absorption and prolonged lifetime of charge carriers. Compared with pure MIL‐125(Ti) and its binary counterparts, the ternary composite exhibits more efficient photocatalytic performance for Rhodamine B (RhB) degradation from water under visible light irradiation. The photodegradation rate of RhB on Ag/rGO/MIL‐125(Ti) is 0.0644 min?1, which is 1.62 times higher than that of the pure MIL‐125(Ti). The improved photocatalytic performance is ascribed to the indirect dye photosensitization, the Ag NP localized surface plasmon resonance, the Ti3+–Ti4+ intervalence electron transfer and the synergistic effect among MIL‐125(Ti), Ag NPs and rGO. Ag NPs serve as an efficient ‘electron reservoir’ and rGO as an electron transporter and collector. Therefore, this work provides a new pathway into the design of MOF‐based composites for application in environmental and energy fields. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Mesoporous Au/TiO2 nanocomposite microspheres have been synthesized by using a microemulsion‐based bottom‐up self‐assembly (EBS) process starting from monodisperse gold and titania nanocrystals as building blocks. The microspheres had large surface areas (above 270 m2 g?1) and open mesopores (about 5 nm), which led to the adsorption‐driven concentration of organic molecules in the vicinity of the microspheres. Au nanoparticles, which were stably confined within the microspheres, enhanced the absorption over the broad UV/Vis/NIR spectroscopic range, owing to their strong surface plasmon resonance (SPR); as a result, the Au nanoparticles promoted the visible‐light photo‐induced degradation of organic compounds.  相似文献   

13.
A hierarchical macro‐/mesoporous Ce0.49Zr0.37Bi0.14O1.93 solid‐solution network has been synthesized on a large scale by means of a simple and general polymerization–carbonization–oxidation synthetic route. The as‐prepared product has been characterized by SEM, XRD, TEM, BET surface area measurement, UV/Vis diffuse‐reflectance spectroscopy, energy‐dispersive X‐ray spectroscopy (EDS), and photoelectrochemistry measurements. The photocatalytic activity of the product has been demonstrated through the photocatalytic degradation of methyl orange. Structural characterization has indicated that the hierarchical macro‐/mesoporous solid‐solution network not only contains numerous macropores, but also possesses an interior mesoporous structure. The mesopore size and BET surface area of the network have been measured as 2–25 nm and 140.5 m2 g?1, respectively. The hierarchical macro‐/mesoporous solid‐solution network with open and accessible pores was found to be well‐preserved after calcination at 800 °C, indicating especially high thermal stability. Due to its high specific surface area, the synergistic effect of the coupling of macropores and mesopores, and its high crystallinity, the Ce0.49Zr0.37Bi0.14O1.93 solid‐solution material shows a strong structure‐induced enhancement of visible‐light harvest and exhibits significantly improved visible‐light photocatalytic activity in the photodegradation of methyl orange compared with those of its other forms, such as mesoporous hollow spheres and bulk particles.  相似文献   

14.
Hypoxia, as a characteristic feature of solid tumor, can significantly adversely affect the outcomes of cancer radiotherapy (RT), photodynamic therapy, or chemotherapy. In this study, a strategy is developed to overcome tumor hypoxia‐induced radiotherapy tolerance. Specifically, a novel two‐dimensional Pd@Au bimetallic core–shell nanostructure (TPAN) was employed for the sustainable and robust production of O2 in long‐term via the catalysis of endogenous H2O2. Notably, the catalytic activity of TPAN could be enhanced via surface plasmon resonance (SPR) effect triggered by NIR‐II laser irradiation, to enhance the O2 production and thereby relieve tumor hypoxia. Thus, TPAN could enhance radiotherapy outcomes by three aspects: 1) NIR‐II laser triggered SPR enhanced the catalysis of TPAN to produce O2 for relieving tumor hypoxia; 2) high‐Z element effect arising from Au and Pd to capture X‐ray energy within the tumor; and 3) TPAN affording X‐ray, photoacoustic, and NIR‐II laser derived photothermal imaging, for precisely guiding cancer therapy, so as to reduce the side effects from irradiation.  相似文献   

15.
Hierarchical macro‐/mesoporous N‐doped TiO2/graphene oxide (N‐TiO2/GO) composites were prepared without using templates by the simple dropwise addition mixed solution of tetrabutyl titanate and ethanol containg graphene oxide (GO) to the ammonia solution, and then calcined at 350 °C. The as‐prepared samples were characterized by scanning electron microscopy (SEM), Brunauer‐Emmett‐Teller (BET) surface area, X‐ray diffraction (XRD), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and UV‐Vis absorption spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange in an aqueous solution under visible‐light irradiation. The results show that N‐TiO2/GO composites exhibited enhanced photocatalytic activity. GO content exhibited an obvious influence on photocatalytic performance, and the optimal GO addition content was 1 wt%. The enhanced photocatalytic activity could be attributed to the synergetic effects of three factors including the improved visible light absorption, the hierarchical macro‐mesoporous structure, and the efficient charge separation by GO.  相似文献   

16.
A novel and facile method was developed to prepare a visible‐light driven TiO2/Ag‐AgCl@polypyrrole (PPy) photocatalyst with Ag‐AgCl nanoparticles supported on TiO2 nanofibers and covered by a thin PPy shell. During the synthesis, the PPy shell and Ag‐AgCl nanoparticles were prepared simultaneously onto TiO2 nanofibers, which simplified the preparation procedure. In addition, because Ag‐AgCl aggregates were fabricated via partly etching the Ag nanoparticles, their size was well controlled at the nanoscale, which was beneficial for improvement of the contact surface area. Compared with reference photocatalysts, the TiO2/Ag‐AgCl@PPy composite exhibited an enhanced photodegradation activity towards rhodamine B under visible‐light irradiation. The superior photocatalytic property originated from synergistic effects between TiO2 nanofibers, Ag‐AgCl nanoparticles and the PPy shell. Furthermore, the TiO2/Ag‐AgCl@PPy composite could be easily separated and recycled without obvious reduction in activity.  相似文献   

17.
Recently, the emergence of photoactive metal–organic frameworks (MOFs) has given great prospects for their applications as photocatalytic materials in visible‐light‐driven hydrogen evolution. Herein, a highly photoactive visible‐light‐driven material for H2 evolution was prepared by introducing methylthio terephthalate into a MOF lattice via solvent‐assisted ligand‐exchange method. Accordingly, a first methylthio‐functionalized porous MOF decorated with Pt co‐catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield (8.90 %) at 420 nm by use sacrificial triethanolamine. This hybrid material exhibited perfect H2 production rate as high as 3814.0 μmol g?1 h?1, which even is one order of magnitude higher than that of the state‐of‐the‐art Pt/MOF photocatalyst derived from aminoterephthalate.  相似文献   

18.
A facile and general strategy is presented to create well‐defined heterojunctions with ultra‐small multimetallic sulfide nanoparticles (MMSNPs) uniformly coated on sliver nanowires. A unique aspect of this method is the atomic‐level pre‐integration of multimetallic components by exploiting recently developed supertetrahedral metal sulfide nanoclusters. The use of such nanoclusters also enables the convenient formation of the ultrathin interfacial Ag2S layer via etching. The heterojunctions (denoted as MMSNPs/Ag2S/Ag‐NWs) benefit from adjustable multimetallic components and display tunable visible‐light‐driven photocatalytic performance owing to the synergistic effect of multimetallic components from MMSNPs and the high carrier mobility of Ag‐NWs. The synthetic strategy opens new routes to designing and fabricating various heterojunctions with multimetallic components, which could further expand their applications in catalysis, electronics, and photonics.  相似文献   

19.
The development of new semiconductor photocatalysts toward splitting water has supplied a promising way to obtain sustainable and clean hydrogen energy. Herein, CdZnS@layered double hydroxide (LDH) composites with a hierarchical flower‐like microstructure have been fabricated with the aid of ZnCr–LDH nanosheets as templates. XRD, SEM and HRTEM show that the ZnCr–LDH nanosheets are uniformly dispersed within the composites. The surface of the hierarchical structures is rough and composed of numerous nanocrystals of CdZnS. The HRTEM images indicate that the surface of CdZnS nanocrystals is mainly composed of the (111) plane. Moreover, the visible‐light‐driven H2 production performance of the CdZnS in the presence and absence of ZnCr–LDH nanosheets has been measured. The results show that ZnCr–LDH nanosheets play an important role in the hierarchical morphology and photocatalytic activity of the as‐prepared samples. In the water‐splitting process, the visible‐light‐driven H2‐production rate of hierarchical flower‐like CdZnS@LDH is 4.03 times and nearly 10 times higher than that of pristine CdZnS microsphere and pure commercial CdS, respectively. Therefore, this work not only achieves enhanced catalytic performance of the CdZnS by the introduction of ZnCr–LDH nanosheets, but also supplies an insight into the relationship between the hierarchical morphology and the semiconductor photocatalytic activity.  相似文献   

20.
Composite nanomaterials usually possess synergetic properties resulting from the respective components and can be used for a wide range of applications. In this work, a Pd nanocubes@ZIF‐8 composite material has been rationally fabricated by encapsulation of the Pd nanocubes in ZIF‐8, a common metal–organic framework (MOF). This composite was used for the efficient and selective catalytic hydrogenation of olefins at room temperature under 1 atm H2 and light irradiation, and benefits from plasmonic photothermal effects of the Pd nanocube cores while the ZIF‐8 shell plays multiple roles; it accelerates the reaction by H2 enrichment, acts as a “molecular sieve” for olefins with specific sizes, and stabilizes the Pd cores. Remarkably, the catalytic efficiency of a reaction under 60 mW cm?2 full‐spectrum or 100 mW cm?2 visible‐light irradiation at room temperature turned out to be comparable to that of a process driven by heating at 50 °C. Furthermore, the catalyst remained stable and could be easily recycled. To the best of our knowledge, this work represents the first combination of the photothermal effects of metal nanocrystals with the favorable properties of MOFs for efficient and selective catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号