首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this paper, the effect of microstructural and surface morphological developments on the soft magnetic properties and giant magneto-impedance (GMI) effect of Fe73.5−xCrxSi13.5B9Nb3Au1 (x=1, 2, 3, 4, 5) alloys was investigated. It was found that the Cr addition causes slight decrease in the mean grain size of α-Fe(Si) grains. AFM results indicated a large variation of surface morphology of density and size of protrusions along the ribbon plane due to structural changes caused by thermal treatments with increasing Cr content. Ultrasoft magnetic properties such as the increase of magnetic permeability and the decrease of coercivity were observed in the samples annealed at 540 °C for 30 min. Accordingly, the GMI effect was also observed in the annealed samples.  相似文献   

2.
We report microstructure evolution in as-spun Fe78Si9B13 ribbons under various wheel speeds (s), which was investigated by X-ray diffraction (XRD), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). With decreasing s, the volume fraction of the residual amorphous phase (Va) in the as-spun ribbons decreases gradually, and the total exothermic heat of the crystallization in the DSC curves also decreases, but the ratio of the exothermic heat of the second crystallization to the first one is on the contrary. α-Fe is found in the ribbon with s of 32.9 m/s, while α-Fe, eutectic α-Fe+Fe2B, and Fe3Si phases are found in ribbons with s of 25.6 and 18.3 m/s. The phase precipitating behavior in cooling processes is well consistent with the annealing process in the literatures.  相似文献   

3.
Curie temperature, crystal structure and crystallization behavior of amorphous alloys with the stoichiometry Fe81−xNixZr7B12 (x=10–60) have been studied by X-ray diffractometry (XRD), differential scanning calorimetry (DSC) and AC-magnetization (TMAG) measurements as functions of temperature. The thermal stability of long-range magnetic order, TC vs. Ni content in as-quenched amorphous alloys exhibits maximum at 352 °C for x=40. The primary crystallization has been detected during annealing at the first crystallization stage of all ribbons investigated.  相似文献   

4.
Melt-spun ribbons of Co69Fe7Si14B10 alloy have been prepared at different wheel speeds viz. 47, 34 and 17 m/s and investigated for structural and magnetic properties. Degree of amorphicity in the as-spun ribbons is found to increase with wheel speed. Amorphous phase crystallizes in two stages producing Co2Si, Co2B and CoSi phases on annealing. Increase in wheel speed improves soft magnetic and magnetoimpedance properties due to decrease in perpendicular anisotropy which is associated with stripe domain formation. On annealing soft magnetic properties and magnetoimpedance deteriorate due to the formation of crystalline phases.  相似文献   

5.
SmCoxTi0.4 (x=6.6, 7.1, 7.6, 8.1) ribbons have been prepared by melt spinning at a wheel speed of 42 m/s, followed by annealing at 750 °C for 2 h. Both as-spun and as-annealed ribbons possess the disordered TbCu7-type (1:7) phase even when the Sm/(Co,Ti) atomic ratio deviates from 1/7. The c/a ratio increases with increasing Co concentration x, but the unit cell volume decreases. The Curie temperatures show above 700 °C, increasing from 707 °C for x=6.6 to 782 °C for x=8.1. The saturation magnetizations increase almost linearly with increasing Co content. The observed magnetic hardening is believed to arise from the high magnetocrystalline anisotropy of the 1:7 phase and the fine nanograin structure. The intrinsic coercivity of 9797 Oe has been obtained in the melt-spun SmCo7.1Ti0.4 ribbons.  相似文献   

6.
Polycrystalline Co2Mn1−xSi (CMS) thin films with Mn-deficiency can grow on different types of substrates such as MgO (1 0 0) single crystal, α-sapphire (0 0 0 1) and Si coated with SiO2 either by using V or Ta/Cu as the seed layer. The magnetic property, especially the coercivity of the CMS thin films strongly depends on the crystalline structure and microstructure of the CMS thin film, hence it is affected by the substrate and also the seed layer. Very soft CMS thin film with coercivity of about 20 Oe has been obtained when MgO (1 0 0) is used as the substrate. Magnetic tunnel junctions (with MR ratio of about 9%–18%) by utilizing the CMS as one of ferromagnetic electrodes have been successfully fabricated. The degradation of the magnetoresistive effect of the MTJ after magnetic annealing is attributed to the diffusion of the Mn-atoms into the tunnel barrier during the annealing process.  相似文献   

7.
The temperature and field dependent magnetic properties of melt-spun amorphous Fe89−xyZr11Bx(Co,Mn)y (x=5, 10 and 0≤y≤10) alloys in the temperature range 5-1200 K are reported. The Curie temperature and saturation magnetization at room temperature increase (decrease) almost linearly with Co (Mn) addition. With increasing Co concentration, the room temperature coercivity increases at the rate of 2.26 (0.28) A/m per at% for the x=5 (10) samples. The high-field magnetic susceptibility and local magnetic anisotropy decrease (increases) rapidly with increasing Co (Mn) concentration. The thermomagnetic curves show a marked increase in magnetization above 850 K corresponding to the crystallization of α-FeCo (α-Fe) phase in samples containing Co (Mn). The Curie temperature of the crystalline phase increases (remains same) with increasing Co (Mn) concentration with the formation of α-FeCo (α-Fe). Addition of Co up to 10 at% in Fe-Zr-B improves the room temperature saturation magnetization from 0.56 to 1.2 T, and Curie temperature from 315 to 476 K. Also, the coercivity increases with Co addition from 1.27 to 23.88 A/m for x=5 and from 7.64 to 10.35 A/m for x=10 alloy. The non-collinear spin structures that characterize Fe rich Fe-Zr-B amorphous alloys have been used to describe the observed results.  相似文献   

8.
A series of the double-doping samples La(2+x)/3Sr(1−4x)/3Mn1−xCrxO3 (0?x?0.25) with the Mn3+/Mn4+ ratio fixed at 2:1 have been fabricated. The structural, magnetic, transport properties and Raman spectroscopy have been investigated, and no apparent crystal structure change is introduced by Cr doping up to x=0.25. But the Curie temperature TC and metal-insulator transition temperature TMI are strongly affected by Cr substitution. The room temperature Raman spectra start exhibiting some new features following the increasing concentration of Cr substitutions. Moreover, it is worth noting that the frequency of the A1g phonon mode can also be well correlated with the A-site mismatch effect (σ2), which is influenced mainly by the variety of the Sr content.  相似文献   

9.
EuCo2(Si1−xGex)2, x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 samples were synthesised by induction melting followed by annealing at 900 °C and rapid quenching. X-ray powder diffraction and Auger electron spectroscopy studies revealed that solid solutions are formed only for x?0.2 and x?0.7. Magnetic susceptibility investigations for the solid solutions revealed a dominant divalent europium valence state in the germanium-rich samples and a dominant trivalent europium component in the silicon-rich samples. In the germanium-rich samples, a long-range antiferromagnetic ordering was observed. In all samples studied, additional magnetic transitions at various temperatures were detected, which could be attributed to small clusters containing different europium chemical surrounding from that in the predominant phase.  相似文献   

10.
The structure and magnetic properties of the melt-spun ribbons of Tb0.27Dy0.73Fex alloy are investigated as a function of various wheel speeds during melt-quenching using a single-roll technique. It is found that Tb0.27Dy0.73Fex alloy is difficult to be fabricated as amorphous state by using the melt-quenching method. X-ray diffractions show that all these ribbons for x=1.7−2.0 are the MgCu2-type phase at the wheel speed of 45 m s−1. For Tb0.27Dy0.73Fex alloy, the high wheel speed is beneficial to eliminate the RFe3 phase and form the perfect MgCu2-type phase. Compared with the bulk of Tb0.27Dy0.73Fe1.95, these ribbons exhibit higher intrinsic coercivity value and their saturation magnetizations increase as well. The magnetostriction of Tb0.27Dy0.73Fe1.95 composite with 4% epoxy resin is 640×10−6 at 900 kA m−1.  相似文献   

11.
Melt-spun ribbons of Co69Fe7Si14−xNbxB10 alloys with x=0, 2 and 4 have been prepared and characterized for structure and soft magnetic properties. Ribbons with x=0 and x=2 are found to be completely amorphous whereas the ribbon with x=4 contains irregular shaped faulted Co2Si orthorhombic phase with grain size of about 100 nm. Nb addition is found to decrease the degree of amorphicity and induce perpendicular anisotropy, deteriorating the soft magnetic and magnetoimpedance properties.  相似文献   

12.
Magnetization curves of Tb1−xGdxMn6Sn6 compounds (0?x?1) have been measured for aligned powder samples in the temperature range 4.2–300 K in pulsed magnetic fields up to 30 T. Temperature and concentration dependences of the magnetocrystalline anisotropy constants K1 and K2 and concentration dependence of the temperature of spontaneous spin-reorientation transition have been determined. Using these data, we estimated the contribution of the manganese and terbium atoms to the magnetic anisotropy of Tb1−xGdxMn6Sn6 and analyzed the origin of the appearance of field-induced first-order magnetic phase transition in these compounds.  相似文献   

13.
The effect of Na doping and annealing time on the structure, electrical properties, magnetoresistance and thermopower properties has been investigated in perovskite La1−xNaxMnOy (x=0.025, 0.075 and 0.1) systems. La1−xNaxMnOy crystallizes in a single-phase rhombohedral structure. It is observed a simultaneous occurrence of the ferromagnetic to paramagnetic state and metallic to insulating state. In the meanwhile, a large negative magnetoresistance with low applied magnetic field is observed. In addition, ρ(T) curves for Na-doped samples exhibit another broad transition Tms2 below Tms. Such double peak behavior in the ρ(T) curve interpreted by the electronic inhomogeneity in the samples. The sign of S changes from positive to negative depending on composition. The values of Seebeck coefficient are small (in the microvolt range).  相似文献   

14.
通过直接快淬制备了不同淬速的Nd8Fe85Mo1B6样品.由振动样品磁强计测量的结果发现,快淬速度对样品的磁性有很大的影响.对样品进行X射线衍射和热磁分析发现,随着淬速的增加样品中的TbCu7相增多,同时软磁相的晶粒尺寸降低,认为样品的相组成和晶粒尺寸的变化是其磁性存在差异的原因. 关键词:  相似文献   

15.
The first-principles full-potential linearized augmented plane-wave method within the generalized gradient approximation for the exchange-correlation functional is used to investigate the structural, electronic and magnetic properties of Zn1−xCrxSe (x=0.25, 0.5, 0.75 and 1.0). We find that Zn1−xCrxSe exhibits a half-metallic characteristic, and the ferromagnetic state is more favourable in energy than the antiferromagnetic state. The calculated total magnetic moment of Zn1−xCrxSe per Cr atom is 4.00 μB, which mainly arises from the Cr atom with a little contribution from the Se and Zn atoms. Furthermore, the robustness of half-metallicity with respect to the variation of lattice constants of Zn1−xCrxSe is discussed.  相似文献   

16.
The magnetic and transport properties in the perovskite Sr1−xLaxFe1−xMnxO3 have been explored. As x rises, the systemic ferromagnetism increases gradually and cluster-spin-glass state occurs in the low-temperature region. For 0.3?x?0.7, the ferromagnetic phase separation from the paramagnetic phase was observed from the results of electron-spin-resonance measurement. Although all samples show a semiconducting behavior, their transport properties are dominated by two different mechanisms, namely, the electronic transport of x?0.5 samples is realized by thermal activation but the variable-range hopping is applied in x?0.7 ones. The different transport mechanism can be understood from the Mn/Fe ions interaction.  相似文献   

17.
NANOPERM-type alloy with chemical composition Fe76Mo8CuB15 was studied by combination of 57Fe Mössbauer spectroscopy and 57Fe(10B, 11B) nuclear magnetic resonance in order to determine distribution of hyperfine magnetic fields and evolution of relative concentration of Fe-containing crystalline phases within the surface layer and the volume of the nanocrystallized ribbons with annealing temperature. Differential scanning calorimetry revealed two crystallization stages at Tx1 ~ 510 °C and Tx2 ~ 640 °C, connected to precipitation of α-Fe and Fe(Mo,B) nanocrystals, respectively. The amorphous and partially crystalline state was obtained by annealing at several temperatures in the range 510-650 °C. The combination of conversion electron (CEMS) and transmission Mössbauer spectrometry (TMS) showed that annealing induces crystallization starting from both surfaces of the ribbons. For the as-quenched sample, scanning electron microscopy (SEM) and CEMS revealed significant differences in the “air” and “wheel” sides of the ribbons, crystallites were preferentially formed at the latter. While SEM micrographs of annealed samples showed various mean diameters of the crystals at opposite sides of the ribbons, the amounts of crystalline volume derived from the CEMS spectra approximately equaled. Mössbauer spectra of annealed samples contained narrow sextet ascribed to crystalline α-Fe phase, three sextets with distribution of hyperfine field assigned to the interface regions of the nanocrystals and the contribution of the amorphous phases. In-field TMS performed at 4.2 K with magnetic moments aligned by external magnetic field enabled to properly determine in particular the contribution of the amorphous phases in the samples. Resulting distributions of the hyperfine fields were compared with 57Fe(10B, 11B) nuclear magnetic resonance (NMR) spectra.  相似文献   

18.
Structure and magnetic properties of Nb-doped (FeZrB)100−xNbx alloy are investigated by X-ray diffraction (XRD), differential scanning calorimetry and vibrating sample magnetometer. The fully amorphous structure of the as-quenched ribbons is confirmed by the XRD pattern. With increasing Nb, the glass transition temperature and the onset crystallization temperature are increased, indicating increased stability of the amorphous structure. For x=1, the saturation magnetization of the ribbons is 125.7 emu/g and the optimized annealing temperature increases from 550 to 630 °C. The morphology of the crystallized phases is observed by scanning electron microscopy. The results show that nanocrystalline α-Fe grains are dispersed in the amorphous matrix.  相似文献   

19.
The magnetic phase diagram for Mg1−xZnxCyNi3 has been tentatively constructed based on magnetization and muon spin relaxation (μSR) measurements. The superconducting phase was observed to fade as x (y) increases (decreases). The low y samples show early stages of long-range ferromagnetism, or complete long-range ferromagnetism. In the phase diagram, the ferromagnetic phase exists in addition to the superconducting phase, suggesting that there is some correlation between superconductivity and ferromagnetism, even though the coexistence of ferromagnetism and superconductivity is not observed from the μSR measurements down to 20 mK for the superconducting sample (Tc=2.5 K, (x, y)=(0, 0.9)).  相似文献   

20.
The magnetizations of Zr76Ni24 metallic glass and hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses have been measured in the temperature range 10-300 K and magnetic fields up to 2 T for various dopant concentrations (x=0, 0.024, 0.043, 0.054). It is found that the samples are paramagnetic and magnetic susceptibility at room temperature, χ(300 K), shows a nonmonotonic behaviour upon hydrogenation. The values of χ(300 K) of the hydrogen-doped partially crystalline (Zr76Ni24)1−xHx metallic glasses are reduced with increase in hydrogen content up to x=0.043, whereas for x=0.054, an enhancement of χ(300 K) has been revealed. The magnetic susceptibility is weakly temperature dependent down to 110 K, below which an increase is observed. A shallow minimum exists between 90 and 120 K. The form and magnitude of the observed temperature dependence of the magnetic susceptibility are well accounted for by the sum of the quantum corrections to the magnetic susceptibility. Hydrogen reduces the electronic diffusion constant and influences strongly the quantum interference at defects, slowing down the spin diffusion and enhancing the magnetic susceptibility in the temperature range from 110 down to 10 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号