首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
EuCo2(Si1−xGex)2, x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 samples were synthesised by induction melting followed by annealing at 900 °C and rapid quenching. X-ray powder diffraction and Auger electron spectroscopy studies revealed that solid solutions are formed only for x?0.2 and x?0.7. Magnetic susceptibility investigations for the solid solutions revealed a dominant divalent europium valence state in the germanium-rich samples and a dominant trivalent europium component in the silicon-rich samples. In the germanium-rich samples, a long-range antiferromagnetic ordering was observed. In all samples studied, additional magnetic transitions at various temperatures were detected, which could be attributed to small clusters containing different europium chemical surrounding from that in the predominant phase.  相似文献   

2.
Using first-principles total energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method, we have investigated the structural, electronic and thermodynamic properties of potassium halides (KClxBr1−x, KClxI1−x and KBrxI1−x), with x concentrations varying from 0% up to 100%. The effect of composition on lattice constants, bulk modulus, band gap and dielectric function was investigated. Deviations of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for the three alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and coworkers. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing ΔHm as well as the phase diagram.  相似文献   

3.
Magnetic and transport properties of (La0.7Pb0.3MnO3)1−xAgx composites are explored in this study. Ferromagnetism is gradually attenuated due to the magnetic dilution with increase of Ag content percentage. Clearly irreversible behavior in the zero-field cooling and field cooling curves at a low field caused by the competition between the magnetization and magnetic domain orientation processes has been observed as x increases. Saturation magnetization decreases as x increases, while ferromagnetic transition temperature remains around 346 K for all composites. The resistivity decreases significantly for (La0.7Pb0.3MnO3)1−xAgx composites. It is suggested that introduction of Ag into the niche of grain boundaries forms artificial conducting network and improves the carriers to transport. However, enhancement of magnetoresistance has been observed for the system.  相似文献   

4.
Based on the pseudopotential scheme, the effect of nitrogen concentration on electronic properties of zinc-blende GaAs1−xNx alloys has been investigated for small amounts of N. The agreement between our calculated electronic band parameters and the available experimental data is generally reasonable. In agreement with recent experiment, we find that the incorporation of a few percent of N in the material of interest reduces substantially the fundamental band-gap energy and narrows the full valence band width. The electron and heavy hole effective masses are found to decrease rapidly when adding a concentration of nitrogen less than 0.005 in GaAs. This may increase the mobility of electrons and heavy holes providing new opportunities regarding the transport properties. The information derived from the present study shows that GaAs1−xNx (0?x?0.05) properties may have an important optoelectronic applications in infrared and mid-infrared spectral regions.  相似文献   

5.
The influence of the substitution of manganese by boron on the crystal structure and magnetic properties of Ni2Mn1−xBxGa Heusler alloys with 0?x?0.5 has been investigated using X-ray diffraction, thermal expansion, resistivity, and magnetization measurements. The samples with concentrations x<0.25 were found to be of single phase and belonged to the cubic L21 crystal structure at room temperature. Crystal cell parameters of the alloys decreased from 5.830 to 5.825 Å with increasing boron concentration (x) from 0 to 0.25. The alloys were ferromagnetically ordered at 5 K and the saturation magnetization decreased with increasing boron concentration. The ferromagnetic ordering and structural transition temperatures for 0?x?0.3 have been observed and the phase (xT) diagram of the Ni2Mn1−xBxGa system was constructed. The phase (xT) diagram indicates that the ground state of Ni2Mn1−xBxGa alloys belongs to ferromagnetic martensitic, premartensitic, and austenitic phases in x?0.12, 0.12<x?0.18, and 0.18<x?0.3, respectively. The relative influence of cell parameters and electron concentrations on the phase diagram is discussed.  相似文献   

6.
A series of the double-doping samples La(2+x)/3Sr(1−4x)/3Mn1−xCrxO3 (0?x?0.25) with the Mn3+/Mn4+ ratio fixed at 2:1 have been fabricated. The structural, magnetic, transport properties and Raman spectroscopy have been investigated, and no apparent crystal structure change is introduced by Cr doping up to x=0.25. But the Curie temperature TC and metal-insulator transition temperature TMI are strongly affected by Cr substitution. The room temperature Raman spectra start exhibiting some new features following the increasing concentration of Cr substitutions. Moreover, it is worth noting that the frequency of the A1g phonon mode can also be well correlated with the A-site mismatch effect (σ2), which is influenced mainly by the variety of the Sr content.  相似文献   

7.
In attempt to characterise the magnetic ordering in the whole composition range of the Cd1−xZnxCr2Se4 system, various magnetic measurements were performed on both crystalline and polycrystalline samples with 0?x?1. The magnetic properties of the system are typical of a ferromagnet below x=0.4 and of a complex antiferromagnet one above x=0.6. In this work the intermediate region was carefully studied. The variations of both M(T) and χac at low fields suggest that transitions from ferromagnetic to Gabay–Toulouse ferromagnetic-spin-glass mixed phase at low temperature occur in the range 0.41?x?0.58. The high-temperature susceptibility measurements show that for the whole concentration range the system obeys Curie–Weiss laws. The results can be explained by the coexistence of competing interactions (ferromagnetic between nearest neighbours and antiferromagnetic between higher order neighbours) and disorder due to the random substitution between zinc and cadmium ions in the tetrahedral sites of the spinel lattice. An experimental magnetic phase diagram of the system is established.  相似文献   

8.
Magnetization curves of Tb1−xGdxMn6Sn6 compounds (0?x?1) have been measured for aligned powder samples in the temperature range 4.2–300 K in pulsed magnetic fields up to 30 T. Temperature and concentration dependences of the magnetocrystalline anisotropy constants K1 and K2 and concentration dependence of the temperature of spontaneous spin-reorientation transition have been determined. Using these data, we estimated the contribution of the manganese and terbium atoms to the magnetic anisotropy of Tb1−xGdxMn6Sn6 and analyzed the origin of the appearance of field-induced first-order magnetic phase transition in these compounds.  相似文献   

9.
Uniform and transparent thin films of Zn1−xMnxO (0?x?0.10) were fabricated by a sol-gel spin coating method. XRD results indicated the hexagonal structure of ZnO as the primary phase at all concentrations (x) of Mn. However, at x?0.035, Mn3O4 (tetragonal) is observed as the secondary phase, which was confirmed by selected-area electron diffraction patterns. SEM and TEM results showed a tendency of grains to arrange into wire-shaped morphologies, leading to elongated needle-like structures at high Mn addition. Increasing Mn content in the range 0?x?0.10 led to quenching of photoluminescence, increase in the band gap (Eg) from 3.27 to 3.33 eV, and increase in film thickness, refractive index and extinction coefficient of Zn1−xMnxO thin films. The residual stress evaluated was compressive in all cases and found to increase by an order of magnitude with addition of Mn. Furthermore, an overall increase in microhardness and yield strength of Zn1−xMnxO thin films at higher Mn concentrations is attributed to change in microstructures, presence of secondary phase and increase in film thickness.  相似文献   

10.
X-ray powder diffraction and magnetization measurements were done on the magnetic shape memory alloys Ni2Mn1+xIn1−x. On the basis of the results, the magnetic phase diagram was determined for Ni2Mn1+xIn1−x alloys. Magnetization measurements make clear that the excess Mn atoms, which substitute for In sites, are coupled ferromagnetically to the ferromagnetic manganese sublattices. A magnetic phase diagram of Ni2Mn1+xIn1−x alloys is discussed qualitatively on the basis of the interatomic dependence of the exchange interactions.  相似文献   

11.
The magnetic phase diagram for Mg1−xZnxCyNi3 has been tentatively constructed based on magnetization and muon spin relaxation (μSR) measurements. The superconducting phase was observed to fade as x (y) increases (decreases). The low y samples show early stages of long-range ferromagnetism, or complete long-range ferromagnetism. In the phase diagram, the ferromagnetic phase exists in addition to the superconducting phase, suggesting that there is some correlation between superconductivity and ferromagnetism, even though the coexistence of ferromagnetism and superconductivity is not observed from the μSR measurements down to 20 mK for the superconducting sample (Tc=2.5 K, (x, y)=(0, 0.9)).  相似文献   

12.
Present study reports the detailed structural and magnetic, as well as chemical analysis of polycrystalline Zn1−xMnxO (where x=0, 0.005, 0.01, 0.03, 0.05 and 0.1) samples synthesized by the high-temperature solid state reaction route. X-ray diffraction studies reveal the presence of secondary phase for higher Mn-doping concentrations (x≥0.03). Secondary phase formation having spinel structure is confirmed and reported as an evidence for the first time using transmission electron microscopy study. Chemical investigations using X-ray photoelectron spectroscopy showed the presence of Mn in two valence states. From the observed results we are of the opinion that Zn2+ ions, mainly present at or near grain boundaries, diffuse into manganese oxide to form a stable spinel phase ZnxMn3−xO4 at or near the grain boundaries of ZnO/Zn1−xMnxO. Magnetization measurements did not show any magnetic transition down to 5 K.  相似文献   

13.
In this work, we have investigated the effect of the substitution of Gd for Pr on the crystal structure and magnetic properties of the Pr1−xGdxCo4B compounds for 0?x?1 using X-ray powder diffraction, magnetic measurements, and differential scanning calorimetry (DSC). These compounds have hexagonal CeCo4B-type structure with the space group P6/mmm. The substitution of Gd for Pr leads to a decrease of the unit-cell parameters a and the unit-cell volume V, while the unit-cell parameter c increases slightly. Magnetic measurements indicate that all samples are ordered magnetically below room temperature. The Curie temperatures determined by DSC technique increase as Pr is substituted by Gd. The saturation magnetization at 5 K decreases upon Gd substitution up to x=0.6, and then increases again.  相似文献   

14.
Ca1−xBixNb1−xCrxO3 (x=0.01-0.5) ceramic powders were synthesized using the sol-gel process. The single-phase solids can be presented at x=0.01 and 0.03. The coexistence of orthorhombic perovskite and the secondary phase of BiCrO3 was verified, as presented for x=0.05-0.5. Grains with a micro-cube topography were obtained for x=0.3-0.5. The average grain size is about 0.4 and 1.1 μm for x=0.3 and 0.5, respectively. The highest dielectric constant peak was measured at around 55 °C for x=0.5 and at 75 °C for x=0.3. The high dielectric constant was caused by the formation of barrier layers at the interface of the bi-phase mixed ceramics. Space charge polarization contributed to the observed behavior.  相似文献   

15.
The first-principles full-potential linearized augmented plane-wave method within the generalized gradient approximation for the exchange-correlation functional is used to investigate the structural, electronic and magnetic properties of Zn1−xCrxSe (x=0.25, 0.5, 0.75 and 1.0). We find that Zn1−xCrxSe exhibits a half-metallic characteristic, and the ferromagnetic state is more favourable in energy than the antiferromagnetic state. The calculated total magnetic moment of Zn1−xCrxSe per Cr atom is 4.00 μB, which mainly arises from the Cr atom with a little contribution from the Se and Zn atoms. Furthermore, the robustness of half-metallicity with respect to the variation of lattice constants of Zn1−xCrxSe is discussed.  相似文献   

16.
Phase structure and magnetic properties of the as-cast and as-milled/annealed SmCo7−xMox (x=0, 0.1, 0.2, 0.3, 0.4) alloys have been systematically studied. It is found that all the as-cast series alloys are composed of the CaCu5-type and Th2Zn17-type phases. Saturation magnetization of the samples decreases with the Mo content increasing. Intrinsic coercivities (iHc) of no more than 0.06 T are observed in these as-cast samples, due to their rather coarse grain microstructures with an average grain size of 50 μm. The as-milled/annealed SmCo7−xMox powders crystallize in the disordered TbCu7-type (1:7) structure with very fine nanograins, and a minor Co3Mo phase appears in the samples with x=0.1-0.4. High iHc (?0.95 T) are achieved in these samples, with a maximum of 1.26 T located at x=0.2, which can be primarily attributed to strong pinning of the domain wall motion at the nanograin boundaries. The temperature coefficient (β) of the iHc is about −0.22%/°C in the temperature range of 25-400 °C for the as-milled/annealed samples.  相似文献   

17.
We have investigated the magnetic and electrical transport properties of Si1−xMnx single crystals grown by the vertical Bridgman method. The alloys with Mn concentrations up to x=0.64 have weak ferromagnetic ordering around TC∼30 K. However, Si0.25Mn0.75 alloys show weak ferromagnetic ordering at 70 K and antiferromagnetic ordering at 104 K, which is confirmed by magnetization and electrical transport studies.  相似文献   

18.
The magnetic and magnetoresistive properties of spinel-type Zn1−xCoxFe2O4 (x=0, 0.2 and 0.4) ferrites are extensively investigated in this study. A large negative magnetoresistance (MR) effect is observed in Zn1−xCoxFe2O4 ferrites of spinel structure. These materials are either ferrimagnetic or paramagnetic at room temperature, and show a spin-(cluster) glass transition at low temperatures, depending on the chemical compositions. The MR curves as a function of magnetic fields, MR(H), are parabolic at all temperatures for paramagnetic polycrystalline ZnFe2O4. The MR for ZnFe2O4 at 110 K in the presence of 9 T applied magnetic field is 30%. On the other hand, MR(H) are linear for x=0.2 and 0.4 ferrimagnetic Zn1−xCoxFe2O4 samples up to 9 T. The MR effect is independent of the sintering temperatures, and can be explained with the help of the spin-dependent scattering and the Yafet–Kittel angle of Zn1−xCoxFe2O4 mixed ferrites.  相似文献   

19.
The variation of the applied field results in a subsequent change of magnetization with time. There is a relationship between the coercivity (Hc), as the equilibrium characteristic of the system, and its magnetic stability (1/S), as a parameter characterizing the time dependence. 1/S as a function of Hc has been measured and studied for different Fe1−xCox samples. We synthesized several samples with different values of x by applying various magnetic fields during the grains’ growth, and observed a linear relationship between 1/S and Hc.  相似文献   

20.
Ferromagnetic Ga1−xMnxAs layers (where x=1.4-3.0%) grown on (1 0 0) GaAs substrates by molecular beam epitaxy were characterized using Raman spectroscopy. As Mn is introduced into GaAs, a marked increase in disorder in the material occurs, as indicated by the growth of the disorder-allowed transverse-optical Raman line. Another important result is that as the Mn concentration in Ga1−xMnxAs increases further beyond ca. 2%, Raman-active coupled-plasmon-longitudinal-optical phonon modes arise, which signals the increasing presence of holes, and thus provides a useful tool for determining their concentration. Using the depletion-layer approach from the Raman spectroscopy data, we determined the carrier concentration for samples with x=2.2% and 3.0% was to be 7.2×1019 and 8.3×1020 cm−3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号