首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
New donor-acceptor alternating conjugated polymers were synthesized and characterized. Among them, PCPBBT exhibited a band-gap of 1.01 eV and ambipolar characteristics with μ(h) = 7.1 × 10(-4) cm(2) V(-1) s(-1) and μ(e) = 3.3 × 10(-3) cm(2) V(-1) s(-1).  相似文献   

2.
Direct arylation methods have been used to polymerize thienylmethylene oxindoles(TEIs) and 3,3-bis[[(2-ethylhexyl)oxy]methyl]-3,4-dihydro-2 H-thieno-[3,4-b][1,4]dioxepin(ProDOT) for new donor-acceptor conjugated polymers. The polymers exhibited blue hues in neutralstate with distinct color-to-transmissive reversible electrochromic switching under applied potentials from 0 V to +1.5 V, and showed high coloration efficiencies(436-438 cm~2·C~(-1)) in near-infrared regions with high switching speeds around 1-2 s under ambient conditions.  相似文献   

3.
Developing new high-mobility polymeric semiconductors with good processability and excellent device environmental stability is essential for organic electronics. We report the synthesis, characterization, manipulation of charge carrier polarity, and device air stability of a new series of bithiophene-imide (BTI)-based polymers for organic field-effect transistors (OFETs). By increasing the conjugation length of the donor comonomer unit from monothiophene (P1) to bithiophene (P2) to tetrathiophene (P3), the electron transport capacity decreases while the hole transport capacity increases. Compared to the BTI homopolymer P(BTimR) having an electron mobility of 10(-2) cm(2) V(-1) s(-1), copolymer P1 is ambipolar with balanced hole and electron mobilities of ~10(-4) cm(2) V(-1) s(-1), while P2 and P3 exhibit hole mobilities of ~10(-3) and ~10(-2) cm(2) V(-1) s(-1), respectively. The influence of P(BTimR) homopolymer M(n) on film morphology and device performance was also investigated. The high M(n) batch P(BTimR)-H affords more crystalline film microstructures; hence, 3× increased electron mobility (0.038 cm(2) V(-1) s(-1)) over the low M(n) one P(BTimR)-L (0.011 cm(2) V(-1) s(-1)). In a top-gate/bottom-contact OFET architecture, P(BTimR)-H achieves a high electron mobility of 0.14 cm(2) V(-1) s(-1), only slightly lower than that of state-of-the-art n-type polymer semiconductors. However, the high-lying P(BTimR)-H LUMO results in minimal electron transport on exposure to ambient. Copolymer P3 exhibits a hole mobility approaching 0.1 cm(2) V(-1) s(-1) in top-gate OFETs, comparable to or slightly lower than current state-of-the-art p-type polymer semiconductors (0.1-0.6 cm(2) V(-1) s(-1)). Although BTI building block incorporation does not enable air-stable n-type OFET performance for P(BTimR) or P1, it significantly increases the OFET air stability for p-type P2 and P3. Bottom-gate/top-contact and top-gate/bottom-contact P2 and P3 OFETs exhibit excellent stability in the ambient. Thus, P2 and P3 OFET hole mobilities are almost unchanged after 200 days under ambient, which is attributed to their low-lying HOMOs (>0.2 eV lower than that of P3HT), induced by the strong BTI electron-withdrawing capacity. Complementary inverters were fabricated by inkjet patterning of P(BTimR)-H (n-type) and P3b (p-type).  相似文献   

4.
We report a new p-type semiconducting polymer family based on the thieno[3,4-c]pyrrole-4,6-dione (TPD) building block, which exhibits good processability as well as good mobility and lifetime stability in thin-film transistors (TFTs). TPD homopolymer P1 was synthesized via Yamamoto coupling, whereas copolymers P2-P8 were synthesized via Stille coupling. All of these polymers were characterized by chemical analysis as well as thermal analysis, optical spectroscopy, and cyclic voltammetry. P2-P7 have lower-lying HOMOs than does P3HT by 0.24-0.57 eV, depending on the donor counits, and exhibit large oscillator strengths in the visible region with similar optical band gaps throughout the series (~1.80 eV). The electron-rich character of the dialkoxybithiophene counits in P8 greatly compresses the band gap, resulting in the lowest E(g)(opt) in the series (1.66 eV), but also raising the HOMO energy to -5.11 eV. Organic thin-film transistor (OTFT) electrical characterization indicates that device performance is very sensitive to the oligothiophene conjugation length, but also to the solubilizing side chain substituents (length, positional pattern). The corresponding thin-film microstructures and morphologies were investigated by XRD and AFM to correlate with the OTFT performance. By strategically varying the oligothiophene donor conjugation length and optimizing the solubilizing side chains, a maximum OTFT hole mobility of ~0.6 cm(2) V(-1) s(-1) is achieved for P4-based devices. OTFT environmental (storage) and operational (bias) stability in ambient was investigated, and enhanced performance is observed due to the low-lying HOMOs. These results indicate that the TPD is an excellent building block for constructing high-performance polymers for p-type transistor applications due to the excellent processability, substantial hole mobility, and good device stability.  相似文献   

5.
Ultrahigh mobility in polymer field-effect transistors by design   总被引:1,自引:0,他引:1  
In this article, the design paradigm involving molecular weight, alkyl substituents, and donor-acceptor interaction for the poly[2,6-(4,4-bis-alkyl-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (cyclopentadithiophene-benzothiadiazole) donor-acceptor copolymer (CDT-BTZ) toward field-effect transistors (FETs) with ultrahigh mobilities is presented and discussed. It is shown that the molecular weight plays a key role in improving hole mobilities, reaching an exceptionally high value of up to 3.3 cm(2) V(-1) s(-1). Possible explanations for this observation is highlighted in conjunction with thin film morphology and crystallinity. Hereby, it is found that the former does not change, whereas, at the same time, crystallinity improved with ever growing molecular weight. Furthermore, other important structural design factors such as alkyl chain substituents and donor-acceptor interaction between the polymer backbones potentially govern intermolecular stacking distances crucial for charge transport and hence for device performance. In this aspect, for the first time we attempt to shed light onto donor-acceptor interactions between neighboring polymer chains with the help of solid state nuclear magnetic resonance (NMR). On the basis of our results, polymer design principles are inferred that might be of relevance for prospective semiconductors exhibiting hole mobilities even exceeding 3 cm(2) V(-1) s(-1).  相似文献   

6.
Two conjugated polymers, IIDDT and IIDT, based on an isoindigo core were developed for organic field-effect transisitors. Investigation of their field-effect performance indicated that IIDDT exhibited air-stable mobility up to 0.79 cm(2) V(-1) s(-1), which is quite high among polymer FET materials. The facile preparation and high mobility of such polymers make isoindigo-based polymers very promising for application as solution-processable organic semiconductors for optoelectronic devices.  相似文献   

7.
Solution-processed In(2)O(3) thin-film transistors (TFTs) were fabricated by a spin-coating process using a metal halide precursor, InCl(3), dissolved in acetonitrile. A thin and uniform film can be controlled and formed by adding ethylene glycol. The synthesized In(2)O(3) thin films were annealed at various temperatures ranging from 200 to 600 °C in air or in an O(2)/O(3) atmospheric environment. The TFTs annealed at 500 °C under air exhibited a high field-effect mobility of 55.26 cm(2) V(-1) s(-1) and an I(on)/I(off) current ratio of 10(7). In(2)O(3) TFTs annealed under an O(2)/O(3) atmosphere at temperatures from 200 to 300 °C exhibited excellent n-type transistor behaviors with field-effect mobilities of 0.85-22.14 cm(2) V(-1) s(-1) and I(on)/I(off) ratios of 10(5)-10(6). The annealing atmosphere of O(2)/O(3) elevates solution-processed In(2)O(3) TFTs to higher performance at lower processing temperature.  相似文献   

8.
π-Conjugated, narrow band gap copolymers containing pyridal[2,1,3]thiadiazole (PT) were synthesized via starting materials that prevent random incorporation of the PT heterocycles relative to the backbone vector. Two regioregular structures could be obtained: in one the PTs are oriented in the same direction, and in the other the orientation of the PTs alternates every other repeat unit. Compared to their regiorandom counterparts, the regioregular polymers exhibit a 2 orders of magnitude increase of the hole mobilites, from 0.005 to 0.6 cm(2) V(-1) s(-1), as determined by field-effect transistor measurements.  相似文献   

9.
A set of two donor-acceptor type conjugated polymers with carboxylic acid side groups have been synthesized and utilized as active materials for dye-sensitized solar cells (DSSCs). The polymers feature a π-conjugated backbone consisting of an electron-poor 2,1,3-benzothiadiazole (BTD, acceptor) unit, alternating with either a thiophene-fluorene-thiophene triad (2a) or a terthiophene (3a) segment as the donor. The donor-acceptor polymers absorb broadly throughout the visible region, with terthiophene-BTD polymer 3a exhibiting an absorption onset at approximately 625 nm corresponding to a ~1.9 eV bandgap. The polymers adsorb onto the surface of nanostructured TiO(2) due to interaction of the polar carboxylic acid units with the metal oxide surface. The resulting films absorb visible light strongly, and their spectra approximately mirror the polymers' solution absorption. Interestingly, a series of samples of 3a with different molecular weight (M(n)) adsorb to TiO(2) to an extent that varies inversely with M(n). DSSCs that utilize the donor-acceptor polymers as sensitizers were tested using an I(-)/I(3)(-) electrolyte. Importantly, for the set of polymer sensitizers 3a with varying M(n), the DSSC efficiency varies inversely with M(n), a result that reflects the difference in adsorption efficiency observed in the film absorption experiments. The best DSSC cell tested is based on a sample of 3a with M(n) ~ 4000, and it exhibits a ~65% peak IPCE with J(sc) ~12.6 mA cm(-2) under AM1.5 illumination and an overall power conversion efficiency of ~3%.  相似文献   

10.
A low-band-gap alternating copolymer, poly{5,6-bis(octyloxy)-4-(thiophen-2-yl)benzo[c]-1,2,5-thiadiazole} (PTBT), was synthesized and investigated for photovoltaic applications. PTBT showed a minimized torsion angle in its main backbone owing to the introduction of solubilizing octyloxy groups on the electron-poor benzothiadiazole unit, thereby resulting in pronounced intermolecular ordering and a deep level of the HOMO (-5.41 eV). By blending PTBT with [6,6]phenyl-C61-butyric acid methyl ester (PC(61)BM), highly promising performance was achieved with power-conversion efficiencies (PCEs) of 5.9 and 5.3% for the conventional and inverted devices, respectively, under air mass 1.5 global (AM 1.5G, 100 mW cm(-2)) illumination. The open-circuit voltage (V(OC) ≈ 0.85-0.87 V) is one of the highest values reported thus far for thiophene-based polymers (e.g., poly(3-hexylthiophene) V(OC) ≈ 0.6 V). The inverted device also achieved a remarkable PCE compared to other devices based on low-band-gap polymers. Ideal film morphology with bicontinuous percolation pathways was expected from the atomic force microscopy (AFM) images, space-charge-limited current (SCLC) mobility, and selected-area electron-diffraction (SAED) measurements. This molecular design strategy is useful for achieving simple, processable, and planar donor-acceptor (D-A)-type low-band-gap polymers with a deep HOMO for applications in photovoltaic cells.  相似文献   

11.
A series of novel electroactive and photoactive conjugated copolymers based on N-alkyl dithieno[3,2-b:2',3'-d]pyrroles (DTP) and thiophene (TH) units (DTP-co-THs) were synthesized using a Stille coupling reaction and exhibited molecular weights of 1.6 x 10(4) to 5.0 x 10(4) g/mol. The incorporation of soluble substituted thiophenes and planar DTP units resulted in low band gap, highly conductive polymers. DTP-co-THs exhibited excellent solubility in common organic solvents and formed high-quality films. Optical characterization revealed that the band gaps of DTP-co-THs were between 1.74 and 2.00 eV, lower than regioregular poly(3-alkylthiophenes). Electrochemical characterization showed that the HOMO energy levels of DTP-co-THs are between -4.68 and -4.96 eV. When doped, DTP-co-THs exhibited high conductivities up to 230 S/cm with excellent stability. The different thiophene substituent patterns' effect on the polymers' optical and electronic properties was then examined by density functional theory computations. The microstructure and surface morphologies of poly(2,6-(4-dodecyl-4H-bisthieno[3,2-b:2',3'-d]pyrrole)-random-2,5-(3-dodecylthiophene)) (P4) and poly(2-(4,4'-didodecyl-2,2'-bithiophen-5-yl)-4-octyl-4H-bisthieno[3,2-b:2',3'-d]pyrrole) (P6) thin films were studied by X-ray diffraction and atomic force microscopy. As-cast P4 and P6 thin films exhibited poorly defined, randomly ordered lamellar structure that improved significantly after thermal annealing. Field effect transistor devices fabricated from P4 and P6 showed typical p-channel transistor behavior. Interestingly, the mobilities of as-cast, less ordered samples were much higher than those observed after annealing. The highest values of maximum and average mobilities were observed for the polymer P6 as-cast (0.21 and 0.13 cm(2) V(-1) s(-1), respectively). One of our goals was to test the idea that high mobility and excellent electrical and structural reproducibility could perhaps be achieved by the creation of amorphous pi-conjugated materials that could possess long arrange pi connectivity on the microscopic scale. The results of these studies strongly suggest that the presence of highly ordered microcrystalline structures in thin films of organic semiconductors is not necessary for excellent performance of organic transistors.  相似文献   

12.
We report the implementation of amorphous indium yttrium oxide (a-IYO) as a thin-film transistor (TFT) semiconductor. Amorphous and polycrystalline IYO films were grown via a low-temperature solution process utilizing exothermic "combustion" precursors. Precursor transformation and the IYO films were analyzed by differential thermal analysis, thermogravimetric analysis, X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and optical transmission, which reveal efficient conversion to the metal oxide lattice and smooth, transparent films. a-IYO TFTs fabricated with a hybrid nanodielectric exhibit electron mobilities of 7.3 cm(2) V(-1) s(-1) (T(anneal) = 300 °C) and 5.0 cm(2) V(-1) s(-1) (T(anneal) = 250 °C) for 2 V operation.  相似文献   

13.
A series of donor-acceptor type poly(arylene ethynylene)s (PAEs) have been synthesized through Sonogashira polycondensation. The polymers consist of an electron donating 9,9-bis(2-ethylhexyl)-9H-fluorene, triphenylamine, 1,4-dialkoxybenzene or 9-(2-ethylhexyl)-9H-carbazole unit and an electron accepting 2,5-bis(2-ethylhexyl)-3,6-diphenylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (EH-DPP) unit, alternately connected through ethynyl bridge. The polymers exhibit weight-average molecular weights (Mw) up to 68, 500 and are soluble in chlorobenzene, dichlorobenzene, THF, chloroform and toluene. A brilliant red solution with absorption maxima between 491 and 500 nm was observed for all the polymers. An intense red fluorescent with photoemission maxima between 551 and 571 nm was observed from polymer solutions. The polymers showed good thermal stability with decomposition temperature more than 260 °C at 5% weight loss. Onset oxidation potentials of the polymers were observed between 1.30 and 1.58 V with HOMO energy levels in the range of −6.10 to −6.38 eV. The OLED devices were fabricated with configuration of ITO/PEDOT:PSS/polymer/LiF/Al for all the polymers and EL maxima between 666 and 684 nm were observed.  相似文献   

14.
Four isomeric naphthodithiophenes (NDTs) with linear and angular shapes were introduced into the polythiophene semiconductor backbones, and their field-effect transistor performances were characterized. The polymers bearing naphtho[1,2-b:5,6-b']dithiophene (NDT3), an angular-shaped NDT, exhibited the highest mobilities of ~0.8 cm(2) V(-1) s(-1) among the four NDT-based polymers, which is among the highest reported so far for semiconducting polymers. Interestingly, the trend of the mobility in the NDT-based polymers was contrary to our expectations; the polymers with angular NDTs showed higher mobilities than those with linear NDTs despite the fact that naphtho[2,3-b:6,7-b']dithiophene (NDT1), a linear-shaped NDT, has shown the highest mobility in small-molecule systems. X-ray diffraction studies revealed that angular-NDT-based polymers gave the highly ordered structures with a very close π-stacking distance of 3.6 ?, whereas linear-NDT-based polymers had a very weak or no π-stacking order, which is quite consistent with the trend of the mobility. The nature of such ordering structures can be well understood by considering their molecular shapes. In fact, a linear NDT (NDT1) provides angular backbones and an angular NDT (NDT3) provides a pseudostraight backbone, the latter of which can pack into the highly ordered structure and thus facilitate the charge carrier transport. In addition to the ordering structure, the electronic structures seem to correlate with the carrier transport property. MO calculations, supported by the measurement of ionization potentials, suggested that, while the HOMOs are relatively localized within the NDT cores in the linear-NDT-based polymers, those are apparently delocalized along the backbone in the angular-NDT-based polymers. The latter should promote the efficient HOMO overlaps between the polymer backbones that are the main paths of the charge carrier transport, which also agrees with the trend of the mobility. With these results, we conclude that angular NDTs, in particular NDT3, are promising cores for high-performance semiconducting polymers. We thus propose that both the molecular shapes and the electronic structures are important factors to be considered when designing high performance semiconducting polymers.  相似文献   

15.
We present a high performance, ambipolar organic field-effect transistor composed of a single material. Ambipolar molecules are rare, and they can enable low-power complementary-like circuits. This low band gap, asymmetric linear acene contains electron-withdrawing fluorine atoms, which lower the molecular orbital energies, allowing the injection of electrons. While hole and electron mobilities of up to 0.071 and 0.37 cm2/V.s, respectively, are reported on devices measured in nitrogen, hole mobilities of up to 0.12 cm2/V.s were found in ambient, with electron transport quenched. These devices were fabricated on octadecyltrimethoxysilane-treated surfaces at a substrate temperature of 60 degrees C.  相似文献   

16.
On the basis of theoretical considerations of the intramolecular charge transfer (ICT) effect, we have designed a series of donor (D)–acceptor (A) conjugated polymers based on bis‐benzothiadiazole (BBT). A PPP‐type copolymer of electron‐rich 2,7‐carbazole (CZ) and electron‐deficient BBT units poly[N‐(2‐decyltetradecyl)‐2,7‐carbazole‐co‐7,7′‐{4,4′‐bis‐(2,1,3‐benzothiadiazole)}] ( PCZ‐BBT ), a PPV‐type copolymer poly[N‐(2‐decyltetradecyl)‐2,7‐carbazolevinylene‐co‐7,7′‐{4,4′‐bis‐(2,1,3‐benzothiadiazolevinylene)}] ( PCZV‐BBTV ), and a tercopolymer based on carbazole, thiophene, and BBT poly[N‐(2‐decyltetradecyl)‐2,7‐(di‐2‐thienyl)carbazole‐co‐7,7′‐{4,4′‐bis‐(2,1,3‐benzothiadiazole)}] ( PDTCZ‐BBT ) have been synthesized to understand the influence of BBT acceptor structure and linkage on the photovoltaic characteristics of the resulting materials. Both the HOMO and LUMO of the resulting polymers are found to be deeper‐lying than those of benzothiadiazole‐based polymers. The measured electrochemical band gaps (eV) are in the following order: PDTCZ‐BBT (1.65 eV) < PCZV‐BBTV (1.69 eV) < PCZ‐BBT (1.75 eV). All the polymers provide a photovoltaic response when blended with a fullerene derivative as an electron acceptor. The best cell reaches a power conversion efficiency of 2.07 % estimated under standard solar light conditions (AM1.5G, 100 mW cm?2). We demonstrate for the first time that BBT‐based polymers are promising materials for use in bulk‐heterojunction solar cells.  相似文献   

17.
A series of alkanethiol monolayers (CH 3(CH 2) n-1 SH, n = 4, 6, 8, 10, 12, 14, 16) were used to modify gold source-drain electrode surfaces for bottom-contact poly(3,3'-didodecylquaterthiophene) (PQT-12) thin-film transistors (TFTs). The device mobilities of TFTs were significantly increased from approximately 0.015 cm (2) V (-1) s (-1) for bare electrode TFTs to a maximum of approximately 0.1 cm (2) V (-1) s (-1) for the n = 8 monolayer devices. The mobilities of devices with alkanethiol-modified Au electrodes varied parabolically with alkyl length with values of 0.06, 0.1, and 0.04 cm (2) V (-1) s (-1) at n = 4, 8, and 16, respectively. Atomic force microscopy investigations reveal that alkanethiol electrode surface modifications promote polycrystalline PQT-12 morphologies at electrode/PQT-12 contacts, which probably increase the density of states of the PQT-12 semiconductor at the interfaces. The contact resistance of TFTs is strongly modulated by the surface modification and strongly varies with the alkanethiol chain length. The surface modifications of electrodes appear to significantly improve the charge injection, with consequent substantial improvement in device performance.  相似文献   

18.
This study describes a general approach for probing semiconductor-dielectric interfacial chemistry effects on organic field-effect transistor performance parameters using bilayer gate dielectrics. Organic semiconductors exhibiting p-/n-type or ambipolar majority charge transport are grown on six different bilayer dielectric structures consisting of various spin-coated polymers/HMDS on 300 nm SiO(2)/p(+)-Si, and are characterized by AFM, SEM, and WAXRD, followed by transistor electrical characterization. In the case of air-sensitive (generally high LUMO energy) n-type semiconductors, dielectric surface modifications induce large variations in the corresponding OTFT performance parameters although the film morphologies and microstructures remain similar. In marked contrast, the device performance of air-stable n-type and p-type semiconductors is not significantly affected by the same dielectric surface modifications. Among the bilayer dielectric structures examined, nonpolar polystyrene coatings on SiO(2) having minimal gate leakage and surface roughness significantly enhance the mobilities of overlying air-sensitive n-type semiconductors to as high as approximately 2 cm(2)/(V s) for alpha,omega-diperfluorohexylcarbonylquaterthiophene polystyrene/SiO(2). Electron trapping due to silanol and carbonyl functionalities at the semiconductor-dielectric interface is identified as the principal origin of the mobility sensitivity to the various surface chemistries in the case of n-type semiconductors having high LUMO energies. Thiophene-based n-type semiconductors exhibiting similar film morphologies and microstructures on various bilayer gate dielectrics therefore provide an incisive means to probe TFT performance parameters versus semiconductor-dielectric interface relationships.  相似文献   

19.
We demonstrate a strategy for designing high-performance, ambipolar, acene-based field-effect transistor (FET) materials, which is based on the replacement of C-H moieties by nitrogen atoms in oligoacenes. By using this strategy, two organic semiconductors, 6,13-bis(triisopropylsilylethynyl)anthradipyridine (1) and 8,9,10,11-tetrafluoro-6,13-bis(triisopropylsilylethynyl)-1-azapentacene (3), were synthesized and their FET characteristics studied. Both materials exhibit high and balanced hole and electron mobilities, 1 having μ(h) and μ(e) of 0.11 and 0.15 cm(2)/V·s and 3 having μ(h) and μ(e) of 0.08 and 0.09 cm(2)/V·s, respectively. The successful demonstration of high and balanced ambipolar FET properties from nitrogen-containing oligoacenes opens up new opportunities for designing high-performance ambipolar organic semiconductors.  相似文献   

20.
Heteroaromatic oligomer 5,7,12,14-tetrachloro-6,13-diazapentacene (TCDAP) was characterized and assessed as n-channel material in field-effect transistor applications. A single-crystal transistor based on TCDAP as the channel material exhibits a very high electron mobility of 3.39 cm(2) V(-1) s(-1) and an on/off ratio of ~1.08 × 10(4) respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号