首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用同步辐射紫外真空圆二色光谱(SRCD)、傅里叶变换红外光谱(FTIR)和荧光光谱研究了超高压(HHP)处理对蘑菇多酚氧化酶(PPO)二级结构和三级结构的影响。HHP处理使蘑菇PPO的α-螺旋含量明显减少,二级结构发生改变。通过SRCD光谱和FTIR光谱分析得出的未处理或HHP处理蘑菇PPO的二级结构含量均存在一定的差异,这种差异可能是由于测量温度、酶液浓度和分析方法等多种因素造成的。荧光光谱表明,HHP处理后,蘑菇PPO溶液荧光光谱的强度降低,最大发射峰发生了红移,表明HHP处理改变了蘑菇PPO分子的三级结构。  相似文献   

2.
Herein, 1 wt% quinoa protein isolate (QPI) was exposed to sonication using a 20 kHz ultrasonicator equipped with a 6 mm horn (14.4 W, 10 mL, up to 15 min) or high hydrostatic pressure (HHP, up to 600 MPa, 15 min) treatments at pH 5, pH 7, and pH 9. The changes to physicochemical properties were probed by SDS-PAGE, FTIR, free sulfhydryl group (SH), surface hydrophobicity (H0), particle size and solubility. As revealed by SDS-PAGE, substantial amounts of 11S globulin participated in the formations of aggregates via SS bond under HHP, particularly at pH 7 and pH 9. However, protein profiles of QPI were not significantly affected by the sonication. Free SH groups and surface hydrophobicity were increased after the sonication treatment indicating protein unfolding and exposure of the embedded SH and/or hydrophobic groups. An opposite trend was observed in HHP treated samples, implying aggregation and reassociation of structures under HHP. HHP and sonication treatments induced a decrease in ordered secondary structures (random coil and β-turn) accompanied with an increase in disordered secondary structures (α-helix and β-sheet) as probed by FTIR. Finally, the sonication treatment induced a significant improvement in the solubility (up to ∼3 folds at pH 7 and ∼2.6 folds at pH 9) and a reduction in particle sizes (up to ∼3 folds at pH 7 and ∼4.4 folds at pH 9). However, HHP treatment (600 MPa) only slightly increased the solubility (∼1.6 folds at pH 7 and ∼1.2 folds at pH 9) and decreased the particle size (∼1.3 folds at pH 7 and ∼1.2 folds at pH 9). This study provides a direct comparison of the impacts of sonication and HHP treatment on QPI, which will enable to choose the appropriate processing methods to achieve tailored properties of QPI.  相似文献   

3.
Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.  相似文献   

4.
The effects of heat treatment (heating temperature and pH) on the structures and emulsifying properties of caseins were systematically studied by spectroscopy. Heat treatment from 60 to 100 ℃ resulted in an increase in their fluorescence intensity, hydrodynamic diameter, turbidity and emulsifying activity index, but decreased the size polydispersity of caseins. In the pH range of 5.5 to 7.0, the fluorescence intensity, hydrodynamic diameter, turbidity and emulsifying properties decreased with increased heating pH, but the size polydispersity of caseins increased with increased pH. The relationship between the surface fluorescence intensity and emulsifying activity was also investigated, revealing a correlation coefficient of 0.90. These results suggested that heat treatment could be used to modify the structures and emulsifying properties of caseins by appropriately selecting heating conditions.  相似文献   

5.
J. Saldo  E. Sendra  B. Guamis 《高压研究》2013,33(3-4):659-663

High hydrostatic pressure (HHP) treatment of cheese intended to accelerate ripening. Along with increased proteolysis, some other parameters were affected, colour being one of them. Right after HHP and at the end of ripening time, Hunterlab colour parameters were very similar in both control and cheese treated at 400 MPa, but during ripening they evolved in a different way. HHP-treated cheese had lower lightness and higher chroma values than control cheese and both characteristics were unexpectedly associated to higher moisture values. Those differences are attributed to changes in cheese microstructure.  相似文献   

6.
The primary objective of the present study was to investigate the effectiveness of ultrasonic treatment time on the particle size, molecular weight, microstructure and solubility of milk fat globule membrane (rich in phospholipid, MPL) and milk protein concentrate (MPC). The mimicking human fat emulsions were prepared using modified proteins and compound vegetable oil and the structural, emulsifying properties and encapsulation efficiency of emulsions were evaluated. After ultrasonic treatment, the cavitation caused particle size decreased and structure change of both MPL and MPC, resulting in the enhancement of protein solubility. While, there was no significant change in molecular weight. Modified proteins by ultrasonic may cause a reduction in particle size and an improvement in emulsifying stability and encapsulation efficiency of emulsions. The optimal ultrasonic time to improve functional properties of MPL emulsion and MPC emulsion were 3 min and 6 min, respectively. The emulsifying stability of MPL emulsion was superior to MPC emulsion, which indicated that MPL is more suitable as membrane material to simulate human fat. Therefore, the obtained results can provide basis for quality control of infant formula.  相似文献   

7.
ABSTRACT

High hydrostatic pressure (HHP) can be an alternative method to steaming to inhibit enzymatic fermentation in green tea making process. However, the effect of HHP treatment on green tea taste is not clear. Thus, this study aimed to determine the effect of HHP on substances associated with green tea taste. Fresh green tea leaves were immediately treated with HHP at 300, 500, or 700?MPa for 10, 30, or 60 min at 25°C. The concentration of free amino acids, catechins, and caffeine in HHP-treated samples was quantified by LC-MS. The taste intensity of the samples was detected by taste sensors. HHP resulted in a high accumulation of free amino acids in green tea leaves, which was likely due to proteolysis. In particular, theanine synthesis may have been promoted by an increase in the concentration of substrates during HHP. Compared to steaming, HHP enhanced umami richness, and inhibited bitterness and astringency.  相似文献   

8.
The effects of ultraviolet-C radiation (UV-C, 11.8?W/m2), single-cycle and multiple-cycle high hydrostatic pressure (HHP at 200, 400 or 600?MPa) on microbial load and physicochemical quality of raw milk were evaluated. Reductions of aerobic plate count (APC) and coliform count (CC) by HHP were more than 99.9% and 98.7%, respectively. Inactivation efficiency of microorganisms increased with pressure level. At the same pressure level, two-cycle treatments caused lower APC, but did not show CC differences compared with single-cycle treatments. Reductions of APC and CC by UV-C were somewhere between 200?MPa and 400/600?MPa. Both HHP and UV-C significantly decreased lightness and increased pH, but did not change soluble solids content and thiobarbituric acid-reactive substances’ values. Two 2.5?min cycles of HHP at 600?MPa caused minimum APC and CC, and maximum conductivity. Compared with HHP, UV-C markedly increased protein oxidation and reduced darkening.  相似文献   

9.
In this study, hemp seed oil (HSO) emulsions stabilized with hemp seed protein (HPI) were prepared and treated with high intensity ultrasonic (HIU). The effects of different treatment powers (0, 150, 300, 450, 600 W) on the properties, microstructure and stability of emulsions were investigated. HIU-treated emulsions showed improved emulsifying activity index and emulsifying stability index, reduced particle size, and increased absolute values of ζ-potential, with the extreme points of these indices occurring at a treatment power of 450 W. Here, the emulsion showed the best dispersion and the smallest particle size in fluorescence microscopy observation, with the highest adsorbed protein content (30.12%), and the highest tetrahydrocannabinol (THC) retention rate (87.64%). The best thermal and oxidative stability of the emulsions were obtained under HIU treatment with a power of 450 W. The D43 and the peroxide values (POV) values after 30 d storage were the smallest at 985.74 ± 64.89 nm and 4.6 μmol/L, respectively. Therefore, 450 W was optimal HIU power to effectively improve the properties of HPI-stabilized HSO emulsion and promote the application of HSO and its derivatives in food processing production.  相似文献   

10.
ABSTRACT

With the increasing demand for fresher, higher quality, minimally processed and safer food, there is a strong necessity to develop non-thermal processing techniques. Also for hummus, which is popular all around the world. In this work, the effect of refrigerated storage on the survival of pathogens in hummus treated by high hydrostatic pressure (HHP) (500?MPa/10?min/room temperature) was evaluated. The cocktail of two Salmonella, four Listeria monocytogenes and two Escherichia coli strains was used in this study. All pathogen types were able to survive in hummus during 60 days of refrigerated storage. HHP-treated samples plated on day 0 successfully achieved a?>?5 log cfu/g reduction for all pathogen types. No residual survivors were present after 30 and 60 days in any of the HHP-treated samples. These results demonstrate that HHP may be a useful technique for the inactivation of pathogens and therefore helpful in designing non-thermal HHP conditions for pressurization of hummus.  相似文献   

11.
In our current research work, the effect of combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) on the enzymatic activity and enzymatic hydrolysis kinetic parameters of dextran catalytic by dextranase were investigated. Furthermore, the effects of US/HHP on the structure of dextranase were also discussed with the aid of fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The maximum hydrolysis of dextran was observed under US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 25 min), in which the hydrolysis of dextran increased by 163.79% compared with the routine thermal incubation at 50 °C. Results also showed that, Vmax and KM values, as well as, kcat of dextranase under US/HHP treatment were higher than that under US, HHP and thermal incubation at 50 °C, indicated that, the substrate is converted into the product at an increased rate when compared with the incubation at 50 °C. Compared to the enzymatic reaction under US, HHP, and routine thermal incubation, dextranase enzymatic reaction under US/HHP treatment showed decreases in Ea, ΔG and ΔH, however small increase in ΔS value was observed. In addition, fluorescence and CD spectra reflected that US/HHP treatment had increased the number of tryptophan on dextranase surface with increased α-helix by 19.80% and reduced random coil by 6.94% upon US/HHP-treated dextranase protein compared to the control, which were helpful for the improvement of its activity. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the hydrolysis of dextran in many industrial applications including sugar manufacturing processes.  相似文献   

12.
ABSTRACT

Cells of Listeria monocytogenes suspended in phosphate-buffered saline (PBS) were treated by high hydrostatic pressure (HHP; 500?MPa, 25°C, 10?min), diluted by ten folds using trypticase soy broth (TSB) or PBS, and stored at cold temperatures of 0–15°C. Viable cell count in TSB increased logarithmically close to the initial count at each storage temperature, while that in PBS increased temporarily and subsequently decreased to almost nondetectable level except the case at 15°C, where it showed logarithmic increase thereafter. Based on proliferation experiments where their healthy cells were inoculated to TSB or to PBS containing their heat-killed dead cells, it was suggested that increase in the viable count of HHP-treated cells in TSB and PBS could be ascribed to the recovery of colony forming ability and/or proliferation depending on the cold storage temperature.  相似文献   

13.
We investigated the influence of high hydrostatic pressure (HHP) treatment on the estrogenic properties and conversion of the phenolic compounds in germinated black soybean. The black soybean was germinated for two- or four-days, and then subjected to HHP at 0.1, 50, 100, or 150?MPa for 12 or 24?h. The highest total polyphenol content (3.9?mg GAE/g), flavonoid content (0.8?mg?CE/g), phenolic acid content (940?±?18.96?μg/g), and isoflavonone content (2600?μg/g) were observed after germination for four days and HHP treatment at 100?MPa for 24?h. In terms of isoflavone composition, the malonyl, acetyl and β-glycoside contents decreased, while the aglycone content increased with HHP. The highest proliferative effect (150%) is observed at four days germination and HHP treatment at 100?MPa. These results suggest that application of HHP may provide useful information regarding the utility of black soybean as alternative hormone replacement therapy.  相似文献   

14.
Influence of high intensity ultrasound (HIUS) on the structure and properties of ovalbumin (OVA) were investigated. It was found that the subunits and secondary structure of OVA did not change significantly with HIUS treatment from the electrophoretic patterns and circular dichroism (CD) spectrum. The amount of free sulfhydryl groups increased and intrinsic fluorescence spectra analysis indicated changes in the tertiary structure and partial unfold of OVA after sonication increased. Compared with the untreated OVA, HIUS treatment increased the emulsifying activity and foaming ability, and decreased interface tension (oil–water and air–water interface), which due to the increased surface hydrophobicity and decreased the surface net charge in OVA, while the emulsifying and foaming stability had no remarkable differences. The increased particle size may be attributed to formation of protein aggregates. Moreover, the gelation temperatures of HIUS-treated samples were higher than the untreated OVA according to the temperature sweep model rheology, and this effect was consistent with the increased in surface hydrophobicity for ultrasound treated OVA. These changes in functional properties of OVA would promote its application in food industry.  相似文献   

15.
ABSTRACT

The effect of high hydrostatic pressure (HHP) treatment (100–200?MPa, 10?min, 20°C) combined with sodium chloride and sodium phosphate on the physicochemical properties of beef gels was investigated. The water content, cooking losses, color, protein composition by SDS-PAGE analysis and texture parameters of beef gels were determined. The beef gels treated with high pressure at 150?MPa showed a synergistic effect in the increased water content and the decreased cooking losses compared with the unpressurized gels. The L*, a* and b* color values of beef gels were slightly decreased under HHP treatment at 100–200?MPa. In the SDS-PAGE analysis, the staining intensity of the α-actinin protein band was decreased in pressurized samples. The cohesiveness, adhesiveness, gel strength and modulus of elasticity were improved after HHP treatment. Application of high pressure treatment (150–200?MPa) before heat treatment would be beneficial for the manufacturing of low salt and/or low phosphate meat products for a healthy diet.  相似文献   

16.
酪蛋白酸钠作为一种良好的乳化剂和乳化稳定剂,对乳饮料品质具有重要的作用。蔗糖作为甜味剂,可以提高乳饮料的口感。但酪蛋白结构和性质很容易受到其所处的微环境的影响,为了分析蔗糖对酪蛋白酸钠结构及其乳化性的影响,利用荧光光谱技术探讨了酪蛋白酸钠荧光光谱和表面疏水性的变化,利用动态光散射技术分析了酪蛋白酸钠乳液液滴流体力学直径的变化,利用Turbiscan光谱学稳定性测试评价了酪蛋白酸钠乳液的背散射光强度变化以及稳定性指数(TSI)。结果表明:蔗糖会使酪蛋白酸钠发生内源荧光猝灭,猝灭速率常数KS<2.0×1010 L·mol-1·s-1,属于动态猝灭,未形成稳定的基态配合物,表明两者仅以较弱的氢键和疏水相互作用结合。酪蛋白酸钠的表面疏水性显著增强(p<0.05),部分酪蛋白酸钠聚集程度增加,形成了可溶性聚集体。随着蔗糖浓度的增加,酪蛋白酸钠乳液流体力学直径增大,是高压均质时蛋白聚集体在油水界面上优先吸附的结果。背散射光强度结果显示随着蔗糖浓度的增加,乳液越不易产生分层、浓度变化、乳滴迁移等不稳定性现象。稳定性指数显著增大(p<0.05),乳液稳定性增强。  相似文献   

17.
采用Malvern粒度仪对柴油、甲醇和水三组元乳化液的雾化特性进行了研究。实验发现:对于压力雾化喷嘴来说,本文所涉及的乳化液由于粘度高于纯柴油,因此雾化效果比纯柴油差,而且喷射压力、乳化剂的粘度和乳化液的组份对乳化液的雾化特性具有显著的影响。随着喷射压力的升高,乳化液喷雾粒径将随之减小;若乳化液中柴油的含量(柴油不少于50%)降低,乳化液的雾化粒径将随之增加;若采用高粘度的乳化剂,相应乳化液喷雾的粒径也大。  相似文献   

18.
The objective of this study was to investigate the effects of high hydrostatic pressure (HHP) on the stability of red blood cells (RBCs) and platelets. Bovine blood cells (n=5) were treated with the pressure of 55, 110, 154 and 220 MPa at 25 °C for 5 min. Light microscopy, atomic force microscopy and flow cytometry studies revealed that RBCs were morphologically stable up until the 220 MPa pressure treatments, at which surface modifications were observed. The platelets were found to be less stable than RBCs. HHP application did not cause any significant change in the signal intensity, band area and frequency values of the infrared bands with the exception that a significant variation was observed in the area of the cholesterol band. No statistically significant variations were observed in the secondary structure elements due to HHP treatment according to the artificial neural network study based on the FTIR data.  相似文献   

19.
《Ultrasonics sonochemistry》2014,21(4):1325-1334
In this research work, dextranase was immobilized onto calcium alginate beads by the combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) treatments. Effects of US/HHP treatments on loading efficiency and immobilization yield of dextranase enzyme onto calcium alginate beads were investigated. Furthermore, the activities of immobilized enzymes prepared with and without US/HHP treatments and that prepared with ultrasonic irradiation (US) and high hydrostatic pressure (HHP), as a function of pH, temperature, recyclability and enzyme kinetic parameters, were compared with that for free enzyme. The maximum loading efficiency and the immobilization yield were observed when the immobilized dextranase was prepared with US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 15 min), under which the loading efficiency and the immobilization yield increased by 88.92% and 80.86%, respectively, compared to immobilized enzymes prepared without US/HHP treatment. On the other hand, immobilized enzyme prepared with US/HHP treatment showed Vmax, KM, catalytic and specificity constants values higher than that for the immobilized enzyme prepared with HHP treatment, indicated that, this new US/HHP method improved the catalytic kinetics activity of immobilized dextranase at all the reaction conditions studied. Compared to immobilized enzyme prepared either with US or HHP, the immobilized enzymes prepared with US/HHP method exhibited a higher: pH optimum, optimal reaction temperature, thermal stability and recyclability, and lower activation energy, which, illustrating the effectiveness of the US/HHP method. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the immobilization of enzymes in polymers.  相似文献   

20.
Rapeseed protein isolate (RPI) and dextran conjugates were prepared by traditional and ultrasonic assisted wet-heating. The effects on the grafting degree (GD), structure, functionality, and digestibility of conjugates were studied. Ultrasonic frequency, temperature, and time all significantly affected the GD. Under the optimum conditions (temperature of 90 °C and time of 60 min), compared to traditional wet-heating, ultrasonic treatment at 28 kHz significantly increased the GD by 2.12 times. Compared to RPI, surface hydrophobicities of conjugates were significantly decreased by graft and ultrasonic treatments. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and amino acid composition results confirmed that traditional graft reaction involved cysteine (Cys) and lysine (Lys) whereas the ultrasonic assisted one involved only Cys. Both were from the 12S globulin subunit and cruciferin. Fourier transform infrared spectrum (FT-IR) and circular dichroism (CD) results showed that graft treatment significantly changed secondary structure and ultrasonic treatment had the greatest impact on the decrease in the β-sheet (19.1%) and the increase in the random coil (49.6%). Graft and ultrasonic treatments both made surface structure looser and more porous. The two treatments also caused molecular weight to become bigger, and ultrasonic treatment had the greatest effect on the increase (68.2%) in 110–20.5 kDa. Structural modifications of RPI by grafting to dextran caused improvements of solubility (at pH 5–6), emulsifying activity (at pH 4–10), emulsion stability (at pH 4–5 and 9–10), and thermal stability (at temperature 90–100 °C). The digestibility of conjugates was decreased by graft and ultrasonic treatments and the conjugates were mainly digested in the intestinal phase. The ultrasonic assisted wet-heating was an efficient and safe method for producing RPI-dextran conjugates and improving the utilization value of rapeseed meal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号