首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

We investigated the effect of high hydrostatic pressure (HHP) on the distribution of free amino acids and isoflavones in soybean immediately after pressure treatment (100–600?MPa, 10–60?min). HHP-treatment at 200 and 300?MPa resulted in high accumulation of free amino acids. Additionally, Gly, Val, and Pro levels increased even after HHP of 400?MPa. The application of HHP-treatment to soybean decreased sources of an astringent taste such as genistein-, daizein-, and glycitein-type molecules under all pressure conditions over 200?MPa. High accumulation of free amino acids with specific pressure–time conditions would be caused by the acceleration of proteolysis and specific amino acid metabolism. We concluded that HHP alone with no subsequent storage enabled the enrichment of specific amino acids such as GABA, Glu, Lys, and Pro in soybean. Soybean with enrichment of these amino acids and improved taste should be an innovative component of functional foods.  相似文献   

2.
We investigated the effect of combined high pressure and sodium hydrogen carbonate (NaHCO3) treatment on the physical properties and color of silverside Australian beef. Meat samples were pressurized at 100–500 MPa and the water content, weight reduction, rupture stress, and meat color were determined. The water content of meat treated with NaHCO3 and high pressure (300 MPa) reached a maximum of 70.1%. Weight reduction tended to decrease with high pressure treatment at 300 MPa. Meats treated with NaHCO3 and high pressure at 400 MPa showed a>50% decrease in hardness. Whitening of the meat was reduced by the combined high pressure and NaHCO3 treatment. Therefore, the combined high pressure and NaHCO3 treatment is effective for improvement of beef quality.  相似文献   

3.
We investigated the influence of high hydrostatic pressure (HHP) treatment on the estrogenic properties and conversion of the phenolic compounds in germinated black soybean. The black soybean was germinated for two- or four-days, and then subjected to HHP at 0.1, 50, 100, or 150?MPa for 12 or 24?h. The highest total polyphenol content (3.9?mg GAE/g), flavonoid content (0.8?mg?CE/g), phenolic acid content (940?±?18.96?μg/g), and isoflavonone content (2600?μg/g) were observed after germination for four days and HHP treatment at 100?MPa for 24?h. In terms of isoflavone composition, the malonyl, acetyl and β-glycoside contents decreased, while the aglycone content increased with HHP. The highest proliferative effect (150%) is observed at four days germination and HHP treatment at 100?MPa. These results suggest that application of HHP may provide useful information regarding the utility of black soybean as alternative hormone replacement therapy.  相似文献   

4.
The effects of ultraviolet-C radiation (UV-C, 11.8?W/m2), single-cycle and multiple-cycle high hydrostatic pressure (HHP at 200, 400 or 600?MPa) on microbial load and physicochemical quality of raw milk were evaluated. Reductions of aerobic plate count (APC) and coliform count (CC) by HHP were more than 99.9% and 98.7%, respectively. Inactivation efficiency of microorganisms increased with pressure level. At the same pressure level, two-cycle treatments caused lower APC, but did not show CC differences compared with single-cycle treatments. Reductions of APC and CC by UV-C were somewhere between 200?MPa and 400/600?MPa. Both HHP and UV-C significantly decreased lightness and increased pH, but did not change soluble solids content and thiobarbituric acid-reactive substances’ values. Two 2.5?min cycles of HHP at 600?MPa caused minimum APC and CC, and maximum conductivity. Compared with HHP, UV-C markedly increased protein oxidation and reduced darkening.  相似文献   

5.
The aim of this study was to investigate the effect of high hydrostatic pressure (HHP) treatment (200, 300, 400?MPa; 5°C, 15°C and 25°C; 5 and 10 min) on some quality properties of pomegranate juice. Juice samples are obtained under industrial conditions at two different squeezing pressure levels (100 and 150?psi – 0.689 and 1.033?MPa, respectively). Results are compared against conventional thermal treatment (85°C/10 min) and raw sample. For all three processing temperature, HHP combinations at 400?MPa for 10 min were sufficient to decrease the microbial load around 4.0 log cycles for both squeeze levels. All HHP treatments showed no significant decrease at antioxidant activity, total phenolic content and monomeric anthocyanin pigment concentrations, while there was a significant decrease (p?≤?.05) in thermal-treated samples. Being the highest sugar alcohol in pomegranate juice, mannitol content must be considered for determining the authenticity, and mannitol content increased with squeezing pressure and thermal treatment.  相似文献   

6.
High hydrostatic pressure (HHP) has high success potential in pollen protein extraction, but its effect on pollen protein profiles has not been studied yet. The aim of this study is to put forward whether HHP processing causes a change in the protein profiles extracted from pollens or not. In this study, proteins extracted from Betula pendula pollens were studied at 100, 200 and 300?MPa at room temperature for 5?min. In addition, the efficiency of three different extraction solvents, namely phosphate buffer saline (PBS) buffer pH 7.5, trichloroacetic acid–acetone and Tris–HCl buffer pH 8.8, was also observed, and the results were compared with the conventional pollen protein extraction procedure. As a result, it is concluded that 200?MPa for 5?min has extracted similar amounts of protein compared with the conventional extraction method which lasted for 24?h, which lasted for 24 h. On the other hand, the application time for 200 MPa for 5 min is extremely shorter when it is compared to the conventional extraction method.  相似文献   

7.
High pressure thermal (HPT) processing is a candidate technology for the production of safe and stable food. However, little is known about the effect of HPT or high hydrostatic pressure (HHP) treatments at ambient temperature on the variability of times to detect growth from individual spores. We investigated this effect by treating Clostridium botulinum type E spores with HHP (200–600?MPa, 20°C) and HPT (600?MPa, 80°C and 800?MPa, 60°C). Our results indicate that the mean detection times increase and the frequency distribution shifts toward longer times when HHP treatment intensity is increased. HPT treatments result in a highly scattered distribution. In contrast, pressure levels ≤300?MPa decrease detection times and heterogeneity of their distribution, which could lead to an increase in the potential risk originating from C. botulinum type E spores. Data provided here could help to refine risk assessment regarding this important food intoxicator.  相似文献   

8.
In this study, secondary structures of sweet potato protein (SPP) after high hydrostatic pressure (HHP) treatment (200–600?MPa) were evaluated and emulsifying properties of emulsions with HHP-treated SPP solutions in different pH values (3, 6, and 9) were investigated. Circular dichroism analysis confirmed the modification of the SPP secondary structure. Surface hydrophobicity increased at pH 3 and decreased at 6 and 9. Emulsifying activity index at pH 6 increased with an increase in pressure, whereas emulsifying stability index increased at pH 6 and 9. Oil droplet sizes decreased, while volume frequency distribution of the smaller droplets increased at pH 3 and 6 with the HHP treatment. Emulsion viscosity increased at pH 6 and 9 and pseudo-plastic flow behaviors were not altered for all emulsions produced with HHP-treated SPP. These results suggested that HHP could modify the SPP structure for better emulsifying properties, which could increase the use of SPP emulsion in the food industry.  相似文献   

9.
We investigated the effect of ultrasound (US) and high hydrostatic pressure (HHP) on the size of reformed casein micelles (RMCs) obtained by titrating calcium and phosphorous solution into sodium caseinate solutions. Both US and HHP reduced the size of the RMCs. A decrease in size from ~200 nm to ~170 nm when US (20 kHz, 0.46 W/mL) was applied for 30 min; and down to ~85 nm when HHP was applied 500 MPa for 15 min. Electron microscopic analysis showed that the RMCs before and after US are similar to milk native casein micelles, and that HHP extensively disintegrated the RMCs. Small angle X-ray scattering and SDS-PAGE showed that the internal structure of the RMCs as well as the casein molecules are not affected by the US and HHP treatments.  相似文献   

10.
In this study, we investigate the effects of high pressures (up to 600 MPa) applied at room temperature for 10 min on beef cooking loss and structure. The data on cooking loss, pH and protein solubility, as well as the electron microscopy, illustrate the changes in cooking loss and structure with high pressure processing (HPP). There is a significant reduction in cooking loss of beef with HPP. When the beef sample is imposed upon by 300 or 400 MPa, the cooking loss reduction is about 12%. Further, the pH of beef is dramatically increased as the pressure increases, and the pH increases by about 5% when imposed upon by 500 MPa. When a high pressure was applied at room temperature, the structure of the beef tissue apparently changed. Muscle fiber fragments gradually became slender and sarcomeres became lengthened. Our data indicated that high-pressure treatment on beef leads to stretching of the muscle fiber and an increase in the water-holding capacity.  相似文献   

11.
ABSTRACT

The effects of high hydrostatic pressure (HHP) on the physicochemical properties of high-β-glucan barley flour were investigated in the present study. Dough samples were made from two types of barley flour with low and high β-glucan content, respectively, and treated with HHP (200–600?MPa) for 10?min. Although the elevation of pasting properties for the samples treated at 600?MPa was reduced to the same extent as that in wheat flour at normal atmospheric pressure, β-glucan content was maintained regardless of the pressure applied. The significant increase in starch damage of the dough samples at 550 and 600?MPa was confirmed by the results of microscopic observation, which revealed that elliptical starch granules were cracked and damaged in samples with low β-glucan at 600?MPa, and in samples with high β-glucan content at 400?MPa or more. X-ray diffraction patterns of the samples treated at 600?MPa indicated the formation of amylose-lipid complexes that were considered to inhibit the elevation of viscosity.  相似文献   

12.
This study was aimed at reducing patulin content of apple juice using a non-thermal method, namely pulsed-high hydrostatic pressure (p-HHP). Commercially available clear apple juice was contaminated artificially with different concentrations of patulin (5, 50 and 100?ppb). Then, the samples were processed 5?min at different pressure treatments (300–500?MPa) in combination with different temperatures (30–50°C) and pulses (6 pulses?×?50?s and 2 pulses?×?150?s). To compare the impact of pulses, single pulse of high hydrostatic pressure (HHP) treatment was also applied with the same pressure/temperature combinations and holding time. Results indicated that pressure treatment in combination with mild heat and pulses reduced the levels of patulin in clear apple juice up to 62.11%. However, reduction rates did not follow a regular pattern. p-HHP was found to be more effective in low patulin concentrations, whereas HHP was more effective for high patulin concentrations. To the best of our knowledge, this is the first study using p-HHP to investigate the reduction of patulin content in apple juice.  相似文献   

13.
在不同温度(20~60℃)和压力(0.1~600 MPa)下处理20 min,对牛肌肉中蛋白酶活性的影响进行了研究.结果显示:室温下,随着处理压力的增加,酶的活力显著下降,而压力达400 MPa及以上时,酶的活力则没有明显变化,同时在pH值为3和7.5时酶的活性几乎完全丧失.200 MPa以下的压力处理使肌肉中游离氨基...  相似文献   

14.
This study was to determine the effects of changes that occurred in the muscle proteins of fresh rainbow trout (Oncorhynchus mykiss) fillets during storage at 4±1°C as a result of packaging in vacuum (C), subject to high pressure after packaging in vacuum high hydrostatic pressue (HHP), packaged in vacuum after wrapping with chitosan film (CFW) and subject to high pressure after wrapping with chitosan-based film and packaged in vacuum (HHP+CFW ). Samples were subjected to SDS-PAGE in four-day intervals and the densitometric analyses of the gels were carried out. According to the results, minor changes were determined in the major bands of the sarcoplasmic and myofibrillar muscle fractions of trouts as a result of HHP application and CFW. The most important change occurred in the myofibrillar muscle fraction as a decrease in the densities of the bands at 200 and 31.4 kDa after HHP application. Similarly, the sarcoplasmic muscle fraction of trout fillet decreased in the densities of the bands at 39.3, 26.6 and 23.3 kDa after HHP application. In addition, it is thought that the bands that occur at 30 kDa in the myofibrillar muscle fraction and at 20.7 kDa at the sarcoplasmic muscle fraction may be related with the degradation of trouts during cold storage.  相似文献   

15.
ABSTRACT

Unpasteurized draft sake has a potentially high market value, due to its fresh flavor and fruity taste, compared with conventional thermal-pasteurized sake. However, the shelf life of draft sake is limited. To increase the shelf life of draft sake, it is necessary to suppress flavor and taste deterioration resulting from inactivation of enzymes produced by koji-mold. Draft sake was treated with high hydrostatic pressure (HHP) of 200 to 500?MPa at ?7 to 50°C to analyze the inactivation of α-amylases, glucose-forming enzymes, and acid carboxypeptidases. We found significant inactivation of enzymes produced by koji-mold in draft sake subjected to HHP treatment at both high and low temperature. However, HHP treatment at low temperature effectively inactivated enzymes while retaining the fresh flavor and fruity taste of draft sake.  相似文献   

16.
Herein, 1 wt% quinoa protein isolate (QPI) was exposed to sonication using a 20 kHz ultrasonicator equipped with a 6 mm horn (14.4 W, 10 mL, up to 15 min) or high hydrostatic pressure (HHP, up to 600 MPa, 15 min) treatments at pH 5, pH 7, and pH 9. The changes to physicochemical properties were probed by SDS-PAGE, FTIR, free sulfhydryl group (SH), surface hydrophobicity (H0), particle size and solubility. As revealed by SDS-PAGE, substantial amounts of 11S globulin participated in the formations of aggregates via SS bond under HHP, particularly at pH 7 and pH 9. However, protein profiles of QPI were not significantly affected by the sonication. Free SH groups and surface hydrophobicity were increased after the sonication treatment indicating protein unfolding and exposure of the embedded SH and/or hydrophobic groups. An opposite trend was observed in HHP treated samples, implying aggregation and reassociation of structures under HHP. HHP and sonication treatments induced a decrease in ordered secondary structures (random coil and β-turn) accompanied with an increase in disordered secondary structures (α-helix and β-sheet) as probed by FTIR. Finally, the sonication treatment induced a significant improvement in the solubility (up to ∼3 folds at pH 7 and ∼2.6 folds at pH 9) and a reduction in particle sizes (up to ∼3 folds at pH 7 and ∼4.4 folds at pH 9). However, HHP treatment (600 MPa) only slightly increased the solubility (∼1.6 folds at pH 7 and ∼1.2 folds at pH 9) and decreased the particle size (∼1.3 folds at pH 7 and ∼1.2 folds at pH 9). This study provides a direct comparison of the impacts of sonication and HHP treatment on QPI, which will enable to choose the appropriate processing methods to achieve tailored properties of QPI.  相似文献   

17.
High hydrostatic pressure is a non-thermal food processing technology, which also has several successful applications in different areas besides food processing. In this study, Capsicum annuum L. (pepper) seeds are subjected to 50, 100, 200 and 300?MPa pressure for 5?min at 25°C and the seedlings of HHP processed seeds are used to compare percentage of seed germination and biochemical properties such as chlorophyll a, b and a/b, proline content, total protein, carotenoid, malondialdehyde, glucose, fructose and phenolic compounds concentrations. As a result of the study, it was observed that there are remarkable changes in terms of biochemical properties especially for seedlings, whose seeds were pressurized at 200 and 300?MPa. More detailed studies are needed to put forward the mechanism behind the changes in biochemical properties.  相似文献   

18.
Chicken breast is not preferred in Japan because it is not juicy. In this study, the effect of combined high pressure and sodium hydrogen carbonate (NaHCO3) treatment on the texture and palatability of chicken breast was investigated. The sample used was broiler chicken breast. Meat samples were soaked in.0–.4 M NaHCO3 solution and then pressurized at 100–400 MPa. After pressurization, the samples were heated for 30 min at 80°C and cooled down in ice-cold water. High pressure and NaHCO3 treatment of broiler chicken breast resulted in increased water content, and decreased weight reduction and rupture stress. Moreover, meat exposed to 200 MPa pressurization and.3 M NaHCO3 treatment was judged tender, juicy and of good taste by sensory evaluation. The combination of high pressure and NaHCO3 treatment can be effectively used for broiler chicken breast production.  相似文献   

19.
ABSTRACT

High hydrostatic pressure (HHP) can be an alternative method to steaming to inhibit enzymatic fermentation in green tea making process. However, the effect of HHP treatment on green tea taste is not clear. Thus, this study aimed to determine the effect of HHP on substances associated with green tea taste. Fresh green tea leaves were immediately treated with HHP at 300, 500, or 700?MPa for 10, 30, or 60 min at 25°C. The concentration of free amino acids, catechins, and caffeine in HHP-treated samples was quantified by LC-MS. The taste intensity of the samples was detected by taste sensors. HHP resulted in a high accumulation of free amino acids in green tea leaves, which was likely due to proteolysis. In particular, theanine synthesis may have been promoted by an increase in the concentration of substrates during HHP. Compared to steaming, HHP enhanced umami richness, and inhibited bitterness and astringency.  相似文献   

20.
The effect of pressure (150, 250 and 350?MPa), ramp rate (200, 400 and 600?MPa/min) and holding time (3, 6 and 9?min) on the quality indices (dependent variable) of Indian white prawn (Fenneropenaeus indicus) was optimized using response surface methodology. Box–Behnken response surface design was used with 15 runs. Second-order response surface model was fitted to the experimental data and the model adequacy was measured by R2 value. The linear and quadratic effect of pressure, ramp rate and holding time was significant for tri-methylamine, total volatile base nitrogen and total plate count. Based on the ridge analysis and response surface plots, the optimum combination obtained was 250?MPa pressure, 400?MPa/min ramp rate and 6?min holding time for high pressure (HP) processing of Indian white prawn. Validation of the experiment indicated that the developed model was appropriate to predict quality indices in Indian white prawn processed by HP processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号