首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-assembled monolayers (SAMs) of liquid crystalline thiol-terminated alkoxycyanobiphenyl molecules with different alkyl chain lengths on Au surface have been studied for the first time using electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The barrier property of the SAM-modified surfaces was evaluated using two different redox probes, namely potassium ferro/ferri cyanide and hexaammineruthenium(III) chloride. It was found that for short-length alkyl chain thiol (C5) the electron transfer reaction of hexaammineruthenium(III) chloride takes place through tunneling mechanism. In contrast, redox reaction of potassium ferro/ferri cyanide is almost completely blocked by the SAM-modified Au surface. From the impedance data, a surface coverage value of >99.9% was calculated for all the thiol molecules.  相似文献   

2.
Self-assembled monolayers (SAMs) of 4,4'-thiobisbenzenethiol (TBBT) can be formed on Au surface spontaneously. The structural characteristics and adsorption behavior of TBBT SAMs on Au have been investigated by surface enhanced Raman scattering (SERS), electrochemical cyclic voltammetry (CV), ac impedance spectroscopy (EIS), and atomic force microscopy (AFM). It is demonstrated that TBBT adsorbed on Au by losing a H atom, forming one Au-S bond, and the other mercapto group is free at the surface of the monolayer owing to the presence of the nu(S-H) at 2513 cm(-1) and the delta(C-S-H) at 910 cm(-1) in SERS. The enhancement of the vibration of C-S (1064 cm(-1)), the aromatic C-H vibration (3044 cm(-1)), and the absence of the vibration of S-S illustrate TBBT adsorbed on Au forming a monolayer with one benzene ring tilted with respect to the Au surface. The interpretation of the observed frequencies is aided by ab initio molecular orbital (MO) calculations at the HF/6-31G level of theory. Electrochemical CV and EIS indicate TBBT monolayers can passivate the Au effectively for its low ratio of pinhole defects (theta = 99.6%). AFM studies give details about the surface morphology. The applications of TBBT SAMs have been extensively investigated by exposure of Cu2+ ion to TBBT SAMs on Au and covalent adsorption of metal nanoparticles. Electrochemical, X-ray photoelectron spectroscopic, and SERS results indicate that Cu2+ can react with TBBT SAMs and present on TBBT SAMs as Cu(I). A scanning electron microscopic image of Ag nanoparticles on TBBT/Au and the Raman spectrum of TBBT in smooth macroscopic Au/TBBT SAMs/Ag nanoparticle sandwich structure indicate that metal nanoparticles can be adsorbed on TBBT SAMs effectively through covalent linkage.  相似文献   

3.
Long chain alkanethiols self-assembled monolayers (SAMs) formed on Au microelectrodes showed higher sensitivity towards defects than the same monolayers on macroelectrodes. The analysis of cyclic voltammetry and electrochemical impedance spectroscopy (EIS) experiments performed on covered microelectrodes were consistent with the formation of pinholes of about 10 nm in diameter. Moreover, the EIS data exhibited a specific behavior that was interpreted invoking the short circuiting of the pinholes impedance by the surrounding surface of the microelectrode in the high frequency domain, whereas in the low frequencies, the surface covered by the SAM was assume to act as an insulator.  相似文献   

4.
界面可控硫醇SAMs纳米金修饰金电极的电化学行为研究   总被引:1,自引:0,他引:1  
在裸金电极上自组装不同比例的4,4’-二甲基联苯硫醇(MTP)和硫辛酸(TA)混合液,形成自组装膜(MTP+TA/Au SAMs),再修饰纳米金,制得纳米金混合巯基修饰金电极(AuNPs/MTP+TA/Au)。研究了纳米金混合巯基修饰金电极的电化学行为和阻抗行为,结果表明电极表面pH值的改变对电极表面的电子转移有重要影响。对葡萄糖传感器的制备条件、测定条件、抗干扰能力等进行了讨论,结果表明修饰电极的微结构和微环境有必要进一步研究。  相似文献   

5.
Self‐assembled monolayers (SAMs) of 4‐aminothiophenol (4‐ATP) has been successfully deposited onto nanometer‐sized gold (Au) electrodes. The cyclic voltammograms obtained on a 4‐ATP SAMs modified electrode show peaks and the peak height is proportional to the scan rate, which is similar to that on an electroactive SAMs modified macro electrode. The electrochemical behavior and mechanism of outer‐sphere electron transfer reaction on the 4‐ATP SAMs modified nanometer‐sized electrode has also been studied. The 4‐ATP SAMs modified electrode is further modified with platinum (Pt) nanoparticles. Electrochemical behaviors show that there is electrical communication between Pt nanoparticles and Au metal on the Pt nanoparticles/4‐ATP SAMs/Au electrode. However, scanning electron microscopic image shows that the Pt nanoparticles are not evenly covered the electrode.  相似文献   

6.
Low impedance, antifouling coatings on gold electrodes based on three new zwitterionic phenyl phosphorylcholine (PPC)‐based layers namely 1) reductively adsorbed PPC diazonium salt, 2) dithiocarbamate PPC SAM and 3) lipoamide PPC SAM (PPC coupled to α‐lipoic acid) were evaluated. The layers were assessed for their ability to limit nonspecific adsorption of proteins to electrode surface with some significant differences observed compared with previously studied PPC diazonium salts reductively adsorbed on glassy carbon. Fluorescence microscopy and electrochemical impedance spectroscopy results suggest that protein adsorption is sensitive to the difference in the structure of the PPC molecules and the charge neutrality of the layers. The lipoamide PPC SAM was shown to be the most effective at resisting nonspecific protein adsorption and this layer was as effective as the ‘gold standard’ of oligo(ethylene oxide) SAMs on gold and PPC diazonium salts reductively adsorbed on glassy carbon.  相似文献   

7.
Numerous reports have focused on ferrocene-terminated electroactive self-assembled monolayers (SAMs) on a flat Au surface but only a few on ferrocene SAMs on Au colloid. In this paper, we employ 4-ferrocene thiophenol as a novel capping agent to produce electroactive gold nanoparticles in consideration of the peculiar pi-conjugated structure. Transmission electron microscopy shows the narrow-dispersed gold core with an average core diameter of ca. 2.5 nm. UV/vis spectra examine the pi-conjugated structure of 4-ferrocene thiophenol and surface plasmon absorbance of the indicated gold nanoparticles. X-ray photoelectron spectroscopy reveals electronic properties of the Au core and thiol ligands. Electrochemical measurement shows that the oxidation peak current is proportional to the scan rate, indicating the electrode process is controlled by adsorbed layer reaction. The formal potential of the Fc-MPCs is compared with that of free ferrocene in MeCN solution and the Fc-SAMs. The shifts are attributed to the phenyl moiety in the 4-ferrocene thiophenol and dielectric constant of the solvation environment.  相似文献   

8.
The reductive and oxidative desorption of a BODIPY labeled alkylthiol self-assembled monolayer (SAM) on Au was studied using electrochemical methods coupled with fluorescence microscopy and image analysis procedures to monitor the removal of the adsorbed layer. Two SAMs were formed using two lengths of the alkyl chain (C10 and C16). The BODIPY fluorescent moiety used is known to form dimers which through donor-acceptor energy transfer results in red-shifted fluorescence. Fluorescence from the monomer and dimer were used to study the nature of the desorbed molecules during cyclic step changes in potential. The reductive desorption was observed to occur over a small potential window (0.15 V) signified by an increase in capacitance and in fluorescence. Oxidative readsorption was also observed through a decrease in capacitance and a lack of total removal of the fluorescent layer. Removal by oxidative desorption occurred at positive potentials over a broad potential range near the oxidation of the bare Au. The resulting fluorescence showed that the desorbed molecules remained near the electrode surface and were not dispersed over the 20 s waiting time. The rate of change of the fluorescence for oxidative desorption was much slower than the reductive desorption. Comparing monomer and dimer fluorescence intensities indicated that the dimer was formed on the Au surface and desorbed as a dimer, rather than forming from desorbed monomers near the electrode surface. The dimer fluorescence can only be observed through energy transfer from the excited monomer suggesting that the monomers and dimers must be in close proximity in aggregates near the electrode. The fluorescence yield for longer alkyl chain was always lower presumably due to its decreased solubility in the interfacial region resulting in a more efficient fluorescence quenching. The oxidative desorption process results in a significantly etched or roughened electrode surface suggesting the coupling of thiol oxidative removal and Au oxide formation which results in the removal of Au from the electrode.  相似文献   

9.
The Au-S interaction is probably the most intensively studied interaction of Au surfaces with nonmetals, as, for example, it plays an important role in Au ore formation(1) and controls the structure and dynamics of thiol-based self-assembled monolayers (SAMs). Various S-induced surface structures on Au(111) were recently reported for different conditions and predominantly interpreted in terms of a static Au surface. Here, we demonstrate that the Au(111) surface exhibits a very dynamic character upon interaction with adsorbed sulfur: large-scale surface restructuring and incorporation of Au atoms into a growing 2D AuS phase were observed in situ. These results provide new insight into the Au-S surface chemistry.  相似文献   

10.
Despite the numerous studies on the self‐assembled monolayers (SAMs) of alkylthiols on gold, the mechanisms involved, especially the nature and influence of the thiol–gold interface are still under debate. In this work the adsorption of aminothiols on Au(111) surfaces has been studied by using surface IR and X‐ray photoelectron spectroscopy (XPS) as well as by density functional theory (DFT) modeling. Two aminothiols were used, cysteamine (CEA) and mercaptoundecylamine (MUAM), which contain two and eleven carbon atoms, respectively. By combining experimental and theoretical methods, it was possible to draw a molecular picture of the thiol–gold interface. The long‐chain aminothiol produced better ordered SAMs, but, interestingly, the XPS data showed different sulfur binding environments depending on the alkyl chain length; an additional peak at low binding energy was observed upon CEA adsorption, which indicates the presence of sulfur in a different environment. DFT modeling showed that the positions of the sulfur atoms in the SAMs on gold with similar unit cells [(2√3×2√3)R30°] depended on the length of the alkyl chain. Short‐chain alkylthiol SAMs were adsorbed more strongly than long‐chain thiol SAMs and were shown to induce surface reconstruction by extracting atoms from the surface, possibly forming adatom/vacancy combinations that lead to the additional XPS peak. In the case of short alkylthiols, the thiol–gold interface governs the layer, CEA adsorbs strongly, and the mechanism is closer to single‐molecule adsorption than self‐assembly, whereas for long chains, interactions between alkyl chains drive the system to self‐assembly, leading to a higher level of SAM organization and restricting the influence of the sulfur–gold interface.  相似文献   

11.
涂伟毅  苏磊  柳文军  吴秉亮 《电化学》2000,6(2):181-186
实验表明 ,铂黑粉末 /Nafion复合微电极的析氢超电势比同样面积的平面铂复合微电极为低 .这是由于Nafion膜与平面铂电极或者铂黑粉末形成的Pt/Nation界面之外还存在可供反应中间物扩散及进行复合反应的自由铂表面 ,这些扩散和复合反应降低了Pt/Nafion界面上电化学反应中间物浓度 ,从而降低了氢超电势 ,加速了析氢反应的速度 .  相似文献   

12.
A novel electrochemical DNA biosensor based on graphene-three dimensional nanostructure gold nanocomposite modified glassy carbon electrode (G-3D Au/GCE) was fabricated for detection of survivin gene which was correlated with osteosarcoma. The G-3D Au film was prepared with one-step electrochemical coreduction with graphite oxide and HAuCl4 at cathodic potentials. The active surface area of G-3D Au/GCE was 2.629 cm2, which was about 3.8 times compared to that of a Au-coated GCE under the same experimental conditions, and 8.8 times compared to a planar gold electrode with a similar geometric area. The resultant nanocomposites with high conductivity, electrocatalysis and biocompatibility were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A “sandwich-type” detection strategy was employed in this electrochemical DNA biosensor and the response of this DNA biosensor was measured by CV and amperometric current–time curve detection. Under optimum conditions, there was a good linear relationship between the current signal and the logarithmic function of complementary DNA concentration in a range of 50–5000 fM with a detection limit of 3.4 fM. This new biosensor exhibited a fast amperometric response, high sensitivity and selectivity and has been used in a polymerase chain reaction assay of real-life sample with a satisfactory result.  相似文献   

13.
The smart surface created in a microfluidic chip has shown the capability of adsorbing and releasing proteins under electrical control. The inner surface of the chip channel was first coated by a thin layer of Au through sputtering and was subsequently modified with loosely packed self-assembled monolayers (SAMs) of thiols with terminal carboxylic or amino groups. Upon application of an external electric potential to the gold substrate, reversible conformational transformation between "bent" and "straight" states for the anchored mercapto chains could be modulated, through the electrostatic effect between the ionized terminal groups and the charged gold substrate. Thus, a hydrophobic or hydrophilic channel surface was established and could be reversibly switched electrochemically. Accordingly, the microchips prepared in this way can reversibly and selectively adsorb and release differently charged proteins under electrical control. Two model proteins, avidin and streptavidin, were demonstrated to be readily adsorbed by the smart chips under negative and positive potential, respectively. Also, more than 90 % of the adsorbed proteins could be released upon an electrical command. Furthermore, these chips were applied to the controlled separation of avidin and streptavidin mixtures with 1:1 and 1:1000 molar ratios. Under specific applied potentials, the chips adsorbed a certain protein from the mixture whereas the other protein was allowed to flow out, after which the adsorbed protein could be released by switching the applied potential. Thus, two eluted protein fractions were obtained and the separation of the two proteins was achieved. For the former mixture, each eluted fraction contained up to approximately 80-90 % avidin or streptavidin. For the latter mixture, the resulting separation efficiency indicated that the molar ratio of avidin and streptavidin could be increased from 1:1000 to about 32:1 after five run separations.  相似文献   

14.
The neural electrode is recognized as a bridge that transduces electrical signals from or into biosignals and is thus used for various experimental and therapeutic purposes. However, a major challenge that still remains is to achieve long-term effective electrical recording and stimulation in vivo. Here, we report an investigation of electrochemically co-deposited poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)/nerve growth factor/dexamethasone phosphate/poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving the electrode/neural-tissue interface. After modification, the electrodes exhibit a substantially higher capacitance and lower electrochemical impedance (reduced by ~ 96%) at 1 kHz as compared to control electrodes. Furthermore, tissue response was evaluated after a 6-week implantation in the cortex of rats. Relative to the control group, the test group show significantly lower immunostaining intensity for glial fibrillary acidic protein and higher intensity for neuronal nuclei at the electrode/neural-tissue interface. All of these characteristics are greatly desired in chronic electrophysiological applications in vivo.  相似文献   

15.
An electrochemical impedance spectroscopy (EIS) sensor design is proposed based on a standard interdigitated electrode layout in which the smaller working electrode consists of gold (Au) whereas the larger combined counter and reference electrode is coated with a porous layer of polypyrrole (PPy) doped with polystyrene sulfonate (PSS) (PPy : PSS). Each electrode material was first characterized by EIS in a standard 3-electrode setup with subsequent spectra fitting by a modified Randles equivalent circuit. The differences in the spectra obtained by the PPy : PSS coated electrodes can be explained by an increased electroactive surface area due to the porous polymer film. The changes in morphology of the film are discussed with respect to the evolution of the elements of the electric equivalent circuit. When applying the Au/PPy : PSS electrode combination to a standard 2-electrode arrangement, the enlarged highly electroactive surface area of the PPy : PSS coating lowers the interfacial impedance in a way that mainly the gold working electrode contributes to the overall system impedance. Therefore, obtaining reproducible EIS signals depends only on the electrode's open-circuit potential (OCP) and on additional adsorption events at the gold electrode/electrolyte interface. We present a protocol for microelectrode coating with PPy : PSS, which enables highly stable 2-electrode EIS experiments without the need of a reference electrode. This combination is believed to be very useful if an integration of sensing electrodes inside Micro Total Analysis Systems is aspired.  相似文献   

16.
高源  徐国华  安越 《物理化学学报》2010,26(8):2211-2216
从Helmholtz模型出发,对生长在金表面不同链长烷基硫醇自组装单分子膜(SAM)表面电势的变化规律进行了理论研究.利用量子化学软件Gaussian03和MOPAC,讨论了分子偶极矩、相对介电常数以及分子的倾斜角对SAM表面电势的影响.研究表明,不同链长烷基硫醇SAM中分子的倾斜角随烷基链长度的规律性变化是引起SAM表面电势变化的主要原因.从SAM形成机制出发,对金表面不同链长烷基硫醇SAM表面电势的变化规律及其成因提出了新的解释.  相似文献   

17.
电化学石英晶体阻抗系统;疏基乙酸;溶菌酶在裸金电极和疏基乙酸或正十二疏烷基醇修饰电极上的吸附  相似文献   

18.
We determined the shifts in the energy levels of approximately 15 nm thick poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] films deposited on various substrates including self-assembled monolayer (SAM) modified Au surfaces using photoelectron spectroscopy. As the unmodified substrates included Au, indium tin oxide, Si (with native oxide), and Al (with native oxide), a systematic shift in the detected energy levels of the organic semiconductor was observed to follow the work function values of the substrates. Furthermore, we used polar SAMs to alter the work function of the Au substrates. This suggests the opportunity to control the energy level positions of the organic semiconductor with respect to the electrode Fermi level. Photoelectron spectroscopy results showed that, by introducing SAMs on the Au surface, we successfully increased and decreased the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. Our study showed that when a substrate is modified by SAMs (or similarly by any adsorbed molecules), a new effective work function value is achieved; however, it does not necessarily imply that the new modified surface will behave similar to a different metal where the work function is equal to the effective work function of the modified surface. Various models and their possible contribution to this result are discussed.  相似文献   

19.
Self-assembled monolayer (SAM) formation of alkanethiols with ionic, hydrophilic terminal functionalities onto various O(2) plasma/ethanol pretreated gold substrates was characterized to explore the effect of gold surface oxide on the SAM packing quality. Oxygen adsorption induced by the Au(2)O(3) surface residuals are observed on the plasma-oxidized and O(2) plasma/ethanol-rinsed pretreated Au surfaces while no obvious adsorbed oxygen is found on freshly coated and O(2) plasma/ethanol sonication pretreated Au substrates. A model for the formation of hydrophilic terminated SAMs, -OH, -COOH, and -PO(3)H(2) is proposed. According to this model, the ionic and/or other binding interactions between the surface Au(2)O(3) and the alkanethiol hydrophilic terminal end as well as the interactions between the terminal SAM functionalities could cause the packing disorder found on these three SAMs formed on Au substrates containing Au(2)O(3) surface species. Copyright 2001 Academic Press.  相似文献   

20.
《Electroanalysis》2003,15(12):1060-1066
The voltammetric behavior of methylene blue (MB) at thiol self‐assembled monolayers modified gold electrodes (SAMs/Au) has been investigated. MB exhibited a redox peak at about ?0.35 V (vs.SCE) in alkaline solution at bare gold electrodes. When the gold electrodes were modified with thiol SAMs, the peak grew due to the accumulation of MB at SAMs. With the solution pH rising, more MB was accumulated, hence the peak height increased, which differed from that at bare gold electrodes. The electrode process at SAMs/Au featured the characteristics of adsorption and/or electrode reaction controlled. The enhancing action of glutathione monolayer (GSH SAM), 3‐mercaptopropionic acid monolayer (3MPA SAM) and other thiol SAMs was compared. Among these, GSH SAM made the MB peak increase more. At GSH SAM/Au, the peak height varied linearly with MB concentration over the range of 2 μM to 400 μM. So this can be developed for the determination of MB and studies concerned. The accumulation behavior caused by GSH SAM and native fish sperm dsDNA was compared. The interaction between DNA and MB was also discussed under this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号