首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Self‐assembled monolayers (SAMs) of 4‐aminothiophenol (4‐ATP) has been successfully deposited onto nanometer‐sized gold (Au) electrodes. The cyclic voltammograms obtained on a 4‐ATP SAMs modified electrode show peaks and the peak height is proportional to the scan rate, which is similar to that on an electroactive SAMs modified macro electrode. The electrochemical behavior and mechanism of outer‐sphere electron transfer reaction on the 4‐ATP SAMs modified nanometer‐sized electrode has also been studied. The 4‐ATP SAMs modified electrode is further modified with platinum (Pt) nanoparticles. Electrochemical behaviors show that there is electrical communication between Pt nanoparticles and Au metal on the Pt nanoparticles/4‐ATP SAMs/Au electrode. However, scanning electron microscopic image shows that the Pt nanoparticles are not evenly covered the electrode.  相似文献   

2.
The objective of this work is to explore approaches to enhance electrochemical signals through sequential deposition and capping of gold particles. Gold nanoparticles are electrodeposited from KAuCl4 solution under potentiostatic conditions on glassy carbon substrates. The number density of the nanoparticles is increased by multiple deposition steps. To prevent secondary nucleation processes, the nanoparticles are isolated after each potentiostatic deposition step by self‐assembled monolayers (SAMs) of decanethiol or mercaptoethanol. The increasing number of particles during five deposition/protection rounds is monitored by assembling electroactive SAMs using a ferrocene‐labeled alkanethiol. A precise estimation of the surface area of the gold nanoparticles by formation of an oxide layer on gold is difficult due to oxidation of the glassy carbon surface. As an alternative approach, the charge flow of the electroactive SAM is used for surface measurement of the gold surface area. A sixfold increase in the redox signal in comparison to a bulk gold surface is observed, and this increase in redox signal is particularly notable given that the surface area of the deposited nanoparticles is only a fraction of the bulk gold surface. After five rounds of deposition there is a gold loading of 1.94 μg cm?2 of the deposited nanoparticles as compared to 23.68 μg cm?2 for the bulk gold surface. Remarkably, however, the surface coverage of the ferrocene alkanethiol on the bulk material is only 10 % of that achieved on the deposited nanoparticles. This enhancement in signal of the nanoparticle‐modified surface in comparison to bulk gold is thus demonstrated not to be attributable to an increase in surface area, but rather to the inherent properties of the surface atoms of the nanoparticles, which are more reactive than the surface atoms of the bulk material.  相似文献   

3.
The reversible assembly of β-cyclodextrin-functionalized gold NPs (β-CD Au NPs) is studied on mixed self-assembled monolayer (SAM), formed by coadsorption of redox-active ferrocenylalkylthiols and n-alkanethiols on gold surfaces. The surface coverage and spatial distribution of the β-CD Au NPs monolayer on the gold substrate are tuned by the self-assembled monolayer composition. The binding and release of β-CD Au NPs to and from the SAMs modified surface are followed by surface plasmon resonance (SPR) spectroscopy. The redox state of the tethered ferrocene in binary SAMs controls the formation of the supramolecular interaction between ferrocene moieties and β-CD-capped Au NPs. As a result, the potential-induced uptake and release of β-CD Au NPs to and from the surface is accomplished. The competitive binding of β-CD Au NPs with guest molecules in solution shifted the equilibrium of the complexation-decomplexation process involving the supramolecular interaction with the Fc-functionalized surface. The dual controlled assembly of β-CD Au NPs on the surface enabled to use two stimuli as inputs for logic gate activation; the coupling between the localized surface plasmon, associated with the Au NP, and the surface plasmon wave, associated with the thin metal surface, is implemented as readout signal for "AND" logic gate operations.  相似文献   

4.
The synthesis and compositional analysis of four different gold clusters with protecting monolayers comprised solely of ferrocene hexanethiolate ligands is described. The gold nanoparticles have average core diameters of 1.4, 1.6, 2.0, and 2.2 nm with estimated average atom counts of 55, 140, 225, and 314 Au atoms and average monolayer coverages of 37, 39, 43, and 58 ferrocenated ligands, respectively. The data show unequivocally that the number of ferrocene hexanethiolate ligands bound to each core size is constrained by the steric requirements of the ferrocene head group; the ligand numbers are significantly smaller than those for hexanethiolate ligands bonded to analogous-sized Au cores. Voltammetry of dilute solutions of these nanoparticles shows a large ferrocene oxidation wave and, at more negative potentials, smaller one-electron waves for the quantized double-layer charging of the Au cores. Together, the ferrocenes and core of the ferrocenated Au314 nanoparticle deliver 60 electrons at the ferrocene oxidation potential, which amounts to a very large volume charge capacity, 7x10(9) C/m3, for an undiluted nanoparticle sample.  相似文献   

5.
以天然不饱和脂肪酸共轭亚油酸(CLA)为绿色单体, 通过简单的分子自组装和可控自交联反应制备聚共轭亚油酸(PCLA)聚集体. 透射电子显微镜(TEM)结果显示, PCLA聚集体的形貌呈现独特网状结构, 其联结单元为来自于CLA胶束的膨大颗粒. 采用氯金酸在极性聚合物表面原位还原, 2 d后在网状PCLA基底上制备得到以CLA胶束为核(20 nm)的网状纳米金结构, 而且网状PCLA的原位还原作用与模板作用相结合是获得PCLA基网状纳米金的充分必要条件. 与普通球形胶态金纳米颗粒[(5±1) nm]相比, PCLA基网状纳米金对苯硫酚具有更好的表面增强拉曼散射(SERS)效应, 对对硝基苯酚具有更好的催化还原效果.  相似文献   

6.
Conjugated molecules with a saturated alkyl linker between a thiol docking group and the pi-conjugated core have been shown to form self-assembled monolayers (SAMs) with a high degree of long-range order and uniformity. Additionally, pronounced odd-even effects have been observed in a number of properties characterizing these SAMs. We focus on omega-(biphenyl-4-yl)alkanethiols with n = 0-6 -(CH2)n- units deposited on Au(111) and investigate the microscopic origin of these odd-even effects in terms of the local sulfur-gold bonding geometry by employing first-principles calculations. An additional structural parameter, the torsion angle between the two phenyl rings in the biphenyl moiety, is identified and its relation to the experimentally observed odd-even effects is discussed. More importantly, we address relevant quantities for the application of these SAMs in molecular electronic devices, in particular, the modification of the work function of the underlying metal substrate and the energetic alignment of the molecular orbitals in the SAM with the Fermi level. While no clear trend emerges for the former, we find pronounced odd-even effects for the latter. Furthermore, the insertion of a single methylene unit between the biphenyl core and the thiol appears to largely decouple the valence electronic systems of the pi-conjugated segment and the gold substrate. Our results thus provide a solid theoretical basis for the interface energetics in this important class of systems.  相似文献   

7.
The adsorption pattern of gold nanoparticles (AuNPs) on functionalized self-assembled monolayers (SAMs) produced on a Au(111) surface was characterized. The Au(111) was modified with 11-amino-1-undecanethiol hydrochloride (AUT), 11-mercapto-1-undecanol (MUT), or 11-mercaptoundecanoic acid (MUA) at an elevated temperature and pressure. The AuNPs aggregated on the AUT-SAM surface, whereas they were well dispersed on the MUT-SAM surface and localized on the MUA-SAM surface. The results suggest that interactions between AuNPs differ according to the degree of peeling of citrate-layer-capped AuNPs. The degree of peeling, which is related to both the surface randomness of the SAMs and the functional characteristics of the terminal group of each SAM, was discussed on the basis of scanning tunneling microscopy observations, X-ray photoelectron spectroscopic analyses, and contact angle measurements. Our study shows that AuNP patterns can be controlled by changing the terminal group of the alkyl thiol SAM on a Au(111) surface.  相似文献   

8.
Novel dithiazepane-functionalized ferrocenyl-phenylethynyl oligomers 1 and 2 have been synthesized. Self-assembled monolayers (SAMs) of these ferrocene derivatives have been studied by X-ray photoelectron spectroscopy, ellipsometry, and cyclic voltammetry. It has been shown by XPS that monolayers of the dithiazepane-anchored molecules on gold electrodes contain gold-thiolate species. Cyclic voltammetry of the SAMs were characteristic of stable electroactive monolayers even for single-component SAMs of 1 and 2, with the more ideal responses recorded for the two-component SAMs diluted with undecanethiol. The small variation in peak splittings at progressively higher scan rates in these SAMs makes dithiazepane-bridged redox species promising candidates for further studies on molecular wires with bipodal anchoring.  相似文献   

9.
Molecular dynamics simulations are used to probe the structure and stability of alkanethiolate self-assembled monolayers (SAMs) on gold nanoparticles. We observed that the surface of gold nanoparticles becomes highly corrugated by the adsorption of the SAMs. Furthermore, as the temperature is increased, the SAMs dissolve into the gold nanoparticle, creating a liquid mixture at temperatures much lower than the melting temperature of the gold nanoparticle. By analyzing the mechanical and chemical properties of gold nanoparticles at temperatures below the melting point of gold, with different SAM chain lengths and surface coverage properties, we determined that the system is metastable. The model and computational results that provide support for this hypothesis are presented.  相似文献   

10.
以冠有大量二茂铁的纳米金微粒/抗生蛋白链菌素结合物为标记物,将其标记于生物素修饰的巯基识别试剂上,制成了具有电化学活性和纳米金放大作用的传感器.首先将双官能团的羟基琥珀酰亚胺酯自组装于电极表面上,借助两步交联反应固定含巯基的蛋白质,并且引入巯基识别试剂标记生物素的马来酰亚胺,随后利用生物素与链霉抗生物素之间的特异性吸附作用,引入功能化的纳米金.采用伏安法测定修饰在纳米金上的二茂铁,可识别和测定表面固定的蛋白质,还原型谷胱苷肽在5μmol/L~0.1mmol/L浓度范围内存在线性关系,检测限可达到1nmol/L.  相似文献   

11.
Self-assembled monolayers (SAMs) of 4,4'-thiobisbenzenethiol (TBBT) can be formed on Au surface spontaneously. The structural characteristics and adsorption behavior of TBBT SAMs on Au have been investigated by surface enhanced Raman scattering (SERS), electrochemical cyclic voltammetry (CV), ac impedance spectroscopy (EIS), and atomic force microscopy (AFM). It is demonstrated that TBBT adsorbed on Au by losing a H atom, forming one Au-S bond, and the other mercapto group is free at the surface of the monolayer owing to the presence of the nu(S-H) at 2513 cm(-1) and the delta(C-S-H) at 910 cm(-1) in SERS. The enhancement of the vibration of C-S (1064 cm(-1)), the aromatic C-H vibration (3044 cm(-1)), and the absence of the vibration of S-S illustrate TBBT adsorbed on Au forming a monolayer with one benzene ring tilted with respect to the Au surface. The interpretation of the observed frequencies is aided by ab initio molecular orbital (MO) calculations at the HF/6-31G level of theory. Electrochemical CV and EIS indicate TBBT monolayers can passivate the Au effectively for its low ratio of pinhole defects (theta = 99.6%). AFM studies give details about the surface morphology. The applications of TBBT SAMs have been extensively investigated by exposure of Cu2+ ion to TBBT SAMs on Au and covalent adsorption of metal nanoparticles. Electrochemical, X-ray photoelectron spectroscopic, and SERS results indicate that Cu2+ can react with TBBT SAMs and present on TBBT SAMs as Cu(I). A scanning electron microscopic image of Ag nanoparticles on TBBT/Au and the Raman spectrum of TBBT in smooth macroscopic Au/TBBT SAMs/Ag nanoparticle sandwich structure indicate that metal nanoparticles can be adsorbed on TBBT SAMs effectively through covalent linkage.  相似文献   

12.
To examine the effects of molecular structure on charge storage in self-assembled monolayers (SAMs), a family of redox-active molecules has been prepared wherein each molecule bears a tether composed of a tripodal linker with three protected thiol groups for surface attachment. The redox-active molecules include ferrocene, zinc porphyrin, ferrocene-zinc porphyrin, magnesium phthalocyanine, and triple-decker lanthanide sandwich coordination compounds. The tripodal tether is based on a tris[4-(S-acetylthiomethyl)phenyl]-derivatized methane. Each redox-active unit is linked to the methane vertex by a 4,4'-diphenylethyne unit. The electrochemical characteristics of each compound were examined in solution and in SAMs on Au. Redox-kinetic measurements were also performed on the SAMs (with the exception of the magnesium phthalocyanine) to probe (1) the rate of electron transfer in the presence of an applied potential and (2) the rate of charge dissipation after the applied potential is disconnected. The electrochemical studies of the SAMs indicate that the tripodal tether provides a more robust anchor to the Au surface than does a tether with a single site of attachment. However, the electron-transfer and charge-dissipation characteristics of the two tethers are generally similar. These results suggest that the tripodal tether offers superior stability characteristics without sacrificing electrochemical performance.  相似文献   

13.
利用聚电解质的静电吸附作用(层层组装),在Au纳米粒子表面包裹上不同层数的二氧化钛前驱体TALH,通过退火形成Au@TiO2复合纳米粒子.以苯硫酚(TP)作为探针分子对退火前复合纳米粒子不同壳层厚度的SERS效应进行表征;可以发现:SERS信号强度的变化跟壳层厚度密切相关,当Au表面包裹至三层TALH时,信号几乎完全消失.此外,结合紫外照射,利用SERS对亚甲基蓝在TiO2壳层表面的光催化降解过程进行现场研究.结果表明:MB的降解主要经历了从多体及二聚体吸附逐渐向单体吸附方式转变,随后又经历了一个脱甲基的过程.因此,本工作发展了将一种紫外催化与现场SERS检测相结合的技术,该技术有望发展成为检测光催化过程,研究表面催化机理的一种强有力的工具  相似文献   

14.
Spatial and electronic structure of gold nanoparticles (AuNPs) and AuNPs with thiol base self-assambled monolayers (SAMs) are reviewed. Theoretical and experimental data on the symmetry, bond lengths, band gaps and binding energies are presented. Coordination of sulfur and its compounds to Au structures and AuS bond length emphasized especially. The works on synthesis of thiol based SAMs on AuNPs are reviewed. The applications of EXAFS and photoelectron spectroscopy for the investigated SAMs on AuNPs are considered.  相似文献   

15.
The electrical properties of self-assembled monolayers (SAMs) on a gold surface have been explored to address the relation between the conductance of a molecule and its electronic structure. We probe interfacial electron transfer processes, particularly those involving electroactive groups, of SAMs of thiolates on Au by using shear force-based scanning probe microscopy (SPM) combined with current-voltage (i-V) and current-distance (i-d) measurements. Peak-shaped i-V curves were obtained for the nitro- and amino-based SAMs studied here. Peak-shaped cathodic i-V curves for nitro-based SAMs were observed at negative potentials in both forward and reverse scans and were used to define the threshold tip bias, V(TH), for electric conduction. For a SAM of 2',5'-dinitro-4,4'-bis(phenylethynyl)-1-benzenethiolate, VII, V(TH) was nearly independent of the tip material [Ir, Pt, Ir-Pt (20-80%), Pd, Ni, Au, Ag, In]. For all of the SAMs studied, the current decreased exponentially with increasing distance, d, between tip and substrate. The exponential attenuation factors (beta values) were lower for the nitro-based SAMs studied here, as compared with alkylthiol-based SAMs. Both V(TH) and beta of the nitro-based SAMs also depended strongly on the molecular headgroup on the end benzene ring addressed by the tip. Finally, we confirmed the "memory" effect observed for nitro-based SAMs. For mixed SAMs of VII and hexadecanethiol, I, the fraction of the charge collected in the negative tip bias region that can be read out at a positive tip bias on reverse scan (up to 38%) depended on the film composition and decreased with an increasing fraction of I, suggesting that lateral electron hopping among molecules of VII occurs in the vicinity of the tip.  相似文献   

16.
Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.  相似文献   

17.
Quartz crystal microbalance(QCM) and cyclic voltammetry(CV) were used to characterize the monolayer of cytochrome c(Cyt c), which was adsorbed on gold film modified with alkanethiol mixed monolayer. A direct comparison of protein surface coverages calculated from QCM and cyclic voltammetric measurements illustrates that the ratio of the electroactive Cyt c to the total surface-confined Cyt cis 34%, which suggests that the orientation is a main factor affecting the electroactivity of Cyt c. Moreover, surface plasmon resonance(SPR) measurement combined with CV “in situ” was used to investigate the conformational change of Cyt c in the redox process. Besides, Au nanoparticles(Au NPs) were adsorbed on the surface of Cyt c. The result indicates that Au NPs promote electron transfer between Cyt c and the gold electrode, and SPR result suggests Au NPs enhance SPR signal.  相似文献   

18.
Self-assembled monolayers(SAMs) of thiol-derivatized porphyrin molecules on Au substrate have attracted extensively interest for use in sensing,optoelectronic devices and molecular electronics.In this paper,tetra-[p-(3-mercaptopropyloxy)-phenyl]porphyrin was synthesized and self-assembled with thiol on Au substrate for porphyrin SAMs(PPS 4).The electrochemical results demonstrated that PPS 4 could form excellent SAMs on gold surface.Self-assembled nanojunctions of PPS 4 were fabricated by using gold nanogap electrodes(gap width:ca.100 nm).With the light on/off,the nanojunctions showed current high/low as nanometer scaled photo switch.  相似文献   

19.
界面可控硫醇SAMs纳米金修饰金电极的电化学行为研究   总被引:1,自引:0,他引:1  
在裸金电极上自组装不同比例的4,4’-二甲基联苯硫醇(MTP)和硫辛酸(TA)混合液,形成自组装膜(MTP+TA/Au SAMs),再修饰纳米金,制得纳米金混合巯基修饰金电极(AuNPs/MTP+TA/Au)。研究了纳米金混合巯基修饰金电极的电化学行为和阻抗行为,结果表明电极表面pH值的改变对电极表面的电子转移有重要影响。对葡萄糖传感器的制备条件、测定条件、抗干扰能力等进行了讨论,结果表明修饰电极的微结构和微环境有必要进一步研究。  相似文献   

20.
Alternate adsorption of oppositely charged myoglobin (Mb) and gold nanoparticles with different sizes were used to assemble {Au/Mb}n layer-by-layer films on solid surfaces by electrostatic interaction between them. The direct electrochemistry of Mb was realized in {Au/Mb}n films at pyrolytic graphite (PG) electrodes, showing a pair of well-defined, nearly reversible cyclic voltammetry (CV) peaks for the Mb heme FeIII/FeII redox couple. Quartz crystal microbalance (QCM), electrochemical impedance spectroscopy (EIS), and CV were used to monitor or confirm the growth of the films. Compared with other Mb layer-by-layer films with nonconductive nanoparticles or polyions, {Au/Mb}n films showed much improved properties, such as smaller electron-transfer resistance (Rct) measured by EIS with Fe(CN)3-/4- redox probe, higher maximum surface concentration of electroactive Mb (Gamma*max), and better electrocatalytic activity toward reduction of O2 and H2O2, mainly because of the good conductivity of Au nanoparticles. Because of the high biocompatibility of Au nanoparticles, adsorbed Mb in the films retained its near native structure and biocatalytic activity. The size effect of Au nanoparticles on the electrochemical and electrocatalytic activity of Mb in {Au/Mb}n films was investigated, demonstrating that the {Au/Mb}n films assembled with smaller-sized Au nanoparticles have smaller Rct, higher Gamma*max, and better biocatalytic reactivity than those with larger size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号