首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Interfacial properties between perovskite layers and metal electrodes play a crucial role in the device performance and the long-term stability of perovskite solar cells. Here, we report a comprehensive study of the interfacial degradation and ion migration at the interface between CH3NH3PbI3 perovskite layer and Ag electrode. Using in situ photoemission spectroscopy measurements, we found that the Ag electrode could induce the degradation of perovskite layers, leading to the formation of PbI2 and AgI species and the reduction of Pb2+ ions to metallic Pb species at the interface. The unconventional enhancement of the intensities of I 3d spectra provides direct experimental evidences for the migration of iodide ions from CH3NH3PbI3 subsurface to Ag electrode. Moreover, the contact of Ag electrode and perovskite layers induces an interfacial dipole of 0.3 eV at CH3NH3PbI3/Ag interfaces, which may further facilitate iodide ion di usion, resulting in the decomposition of perovskite layers and the corrosion of Ag electrode.  相似文献   

2.
Methylammonium lead iodide (CH3NH3PbI3) perovskite compound has produced a remarkable breakthrough in the photovoltaic history of solar cell technology because of its outstanding device‐based performance as a light‐harvesting semiconductor. Whereas the experimental and theoretical studies of this system in the solid state have been numerously reported in the last 4 years, its fundamental cluster physics is yet to be exploited. To this end, this study has performed theoretical investigations using DFT‐M06‐2X/ADZP to examine the principal geometrical, electronic, topological, and orbital properties of the CH3NH3PbI3 molecular building block. The intermolecular hydrogen bonded interactions examined for the most important conformers of the system are found to be unusually strong, with binding energies lying between −93.53 and −125.11 kcal mol−1 (beyond the covalent limit, −40 kcal mol−1), enabling us to classify the underlying interactions as ultra‐strong type since their characteristic properties are unidentical with those have already been proposed as very strong, strong, moderate, weak, and van der Waals. Based on this, together with the unusually high charge transfers, strong hyperconjugative interactions, sophisticated topologies of the charge density, and short intermolecular distances of separation, we have characterized the conformers of CH3NH3PbI3 as Mulliken inner complexes. The consequences of these, as well as of the ultra‐strong interactions, in designing novel functional nanomaterials are outlined. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
A three‐step method for the deposition of CH3NH3PbI3 perovskite films with a high crystalline structure and large cuboid overlayer morphology is reported. The method includes PbI2 deposition, which is followed by dipping into a solution of C4H9NH3I (BAI) and (BA)2PbI4 perovskite formation. In the final step, the poorly thermodynamically stable (BA)2PbI4 phase converts into the more stable CH3NH3PbI3 perovskite by dipping into a solution of CH3NH3I. The final product is characterized by XRD, SEM, UV/Vis, and photoluminescence analysis methods. The experimental results indicate that the prepared perovskite has cuboids with high crystallinity and large sizes (up to 1 μm), as confirmed by XRD and SEM data. Photovoltaic investigations show that the three‐step method results in higher solar cell efficiency (15 % enhancement in efficiency) with a better reproducibility than the conventional two‐step deposition method.  相似文献   

4.
We report herein the discovery of methylamine (CH3NH2) induced defect‐healing (MIDH) of CH3NH3PbI3 perovskite thin films based on their ultrafast (seconds), reversible chemical reaction with CH3NH2 gas at room temperature. The key to this healing behavior is the formation and spreading of an intermediate CH3NH3PbI3?xCH3NH2 liquid phase during this unusual perovskite–gas interaction. We demonstrate the versatility and scalability of the MIDH process, and show dramatic enhancement in the performance of perovskite solar cells (PSCs) with MIDH. This study represents a new direction in the formation of defect‐free films of hybrid perovskites.  相似文献   

5.
Methylammonium (CH3NH3+) and formamidinium ((NH2)2CH+) based lead iodide perovskites are currently the two commonly used organic–inorganic lead iodide perovskites. There are still no alternative organic cations that can produce perovskites with band gaps spanning the visible spectrum (that is, <1.7 eV) for solar cell applications. Now, a new perovskite using large propane‐1,3‐diammonium cation (1,3‐Pr(NH3)22+) with a chemical structure of (1,3‐Pr(NH3)2)0.5PbI3 is demonstrated. X‐ray diffraction (XRD) shows that the new perovskite exhibits a three‐dimensional tetragonal phase. The band gap of the new perovskite is about 1.6 eV, which is desirable for photovoltaic applications. A (1,3‐Pr(NH3)2)0.5PbI3 perovskite solar cell (PSC) yields a power conversion efficiency (PCE) of 5.1 %. More importantly, this perovskite is composed of a large hydrophobic cation that provides better moisture resistance compared to CH3NH3PbI3 perovskite.  相似文献   

6.
The technique for growing CH3NH3PbI3 single crystals from saturated solutions in concentrated hydroiodic acid is improved by introducing a reducing agent (hypophosphorous acid). The structure of perovskite is confirmed by single crystal XRD. By energy dispersive spectroscopy and X-ray photoelectron spectroscopy it is established that the stoichiometry of the grown crystals corresponds to the CH3NH3PbI3 compound. Changes in the photoluminescence intensity during in-air measurements show that the crystals synthesized using the reducing agent are more stable in the external environment with laser exposure than without it.  相似文献   

7.
The long-term stability remains one of the main challenges for the commercialization of the rapidly developing hybrid organic-inorganic perovskite solar cells. Herein, we investigate the electronic and optical properties of the recently reported hybrid halide perovskite (CH2)2NH2PbI3 (AZPbI3), which exhibits a much better stability than the popular halide perovskites CH3NH3PbI3 and HC(NH2)2PbI3, by using density functional theory (DFT). We find that AZPbI3 possesses a band gap of 1.31 eV, ideal for single-junction solar cells, and its optical absorption is comparable with those of the popular CH3NH3PbI3 and HC(NH2)2PbI3 materials in the whole visible-light region. In addition, the conductivity of AZPbI3 can be tuned from efficient p-type to n-type, depending on the growth conditions. Besides, the charge-carrier mobilities and lifetimes are unlikely hampered by deep transition energy levels, which have higher formation energies in AZPbI3 according to our calculations. Overall, we suggest that the perovskite AZPbI3 is an excellent candidate as a stable high-performance photovoltaic absorber material.  相似文献   

8.
Two pseudohalide thiocyanate ions (SCN?) have been used to replace two iodides in CH3NH3PbI3, and the resulting perovskite material was used as the active material in solar cells. In accelerated stability tests, the CH3NH3Pb(SCN)2I perovskite films were shown to be superior to the conventional CH3NH3PbI3 films as no significant degradation was observed after the film had been exposed to air with a relative humidity of 95 % for over four hours, whereas CH3NH3PbI3 films degraded in less than 1.5 hours. Solar cells based on CH3NH3Pb(SCN)2I thin films exhibited an efficiency of 8.3 %, which is comparable to that of CH3NH3PbI3 based cells fabricated in the same way.  相似文献   

9.
In this paper we report on the influence of light and oxygen on the stability of CH3NH3PbI3 perovskite‐based photoactive layers. When exposed to both light and dry air the mp‐Al2O3/CH3NH3PbI3 photoactive layers rapidly decompose yielding methylamine, PbI2, and I2 as products. We show that this degradation is initiated by the reaction of superoxide (O2?) with the methylammonium moiety of the perovskite absorber. Fluorescent molecular probe studies indicate that the O2? species is generated by the reaction of photoexcited electrons in the perovskite and molecular oxygen. We show that the yield of O2? generation is significantly reduced when the mp‐Al2O3 film is replaced with an mp‐TiO2 electron extraction and transport layer. The present findings suggest that replacing the methylammonium component in CH3NH3PbI3 to a species without acid protons could improve tolerance to oxygen and enhance stability.  相似文献   

10.
Moisture is shown to activate the reaction between PbI2 and methylammonium halides. In addition, two activating mechanisms are proposed for the formation of CH3NH3PbI3 and CH3NH3PbI3?xClx films from a series of carefully controlled experiments. When these rapidly formed perovskite films are directly fabricated into the devices, poor photovoltaic properties are found, due to heavy surface charge recombination. However, the cell performance can be significantly enhanced to 13.63 % and to over 12 % in the steady state for CH3NH3PbI3 and to 15.50 % and over 14 % in the steady state for CH3NH3PbI3?xClx, if the rapidly formed perovskite film is annealed. Thus, it is believed that moisture (below 60 % RH) is not a problem for the fabrication of highly efficient perovskite solar cells.  相似文献   

11.
Methylamine‐induced thin‐film transformation at room‐temperature is discovered, where a porous, rough, polycrystalline NH4PbI3 non‐perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH3NH3PbI3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH4PbI3‐to‐CH3NH3PbI3 transformation process. The chemical origins of this transformation are studied at various length scales.  相似文献   

12.
The interfacial electronic structure of perovskite layers and transport layers is critical for the performance and stability of perovskite solar cells (PSCs). The device performance of PSCs can generally be improved by adding a slight excess of lead iodide (PbI2) to the precursor solution. However, its underlying working mechanism is controversial. Here, we performed a comprehensive study of the electronic structures at the interface between CH3NH3PbI3 and C60 with and without the modification of PbI2 using in situ photoemission spectroscopy measurements. The correlation between the interfacial structures and the device performance was explored based on performance and stability tests. We found that there is an interfacial dipole reversal, and the downward band bending is larger at the CH3NH3PbI3/C60 interface with the modification of PbI2 as compared to that without PbI2. Therefore, PSCs with PbI2 modification exhibit faster charge carrier transport and slower carrier recombination. Nevertheless, the modification of PbI2 undermines the device stability due to aggravated iodide migration. Our findings provide a fundamental understanding of the CH3NH3PbI3/C60 interfacial structure from the perspective of the atomic layer and insight into the double-edged sword effect of PbI2 as an additive.  相似文献   

13.
The influence of the synthesis conditions (rotation speed used for spin-coating deposition of the film, film drying temperature, and the ratio of the PbI2 and CH3NH3I reactants in solutions) on the microstructure, phase composition, and spectral-luminescent properties of films of organic-inorganic perovskite CH3NH3PbI3–xCl x (x = 0, 0.02) was elucidated.  相似文献   

14.
Increasing the stability of perovskite solar cells is one of the most important tasks in the photovoltaic industry. Thus, the structural, energetic, and electronic properties of pure CH3NH3PbI3 and fully doped compounds (CH3NH3PbBr3 and CH3NH3PbCl3) in cubic and tetragonal phases were investigated using density functional theory calculations. We also considered the effects of mixed halide perovskites CH3NH3PbI2X (where X = Br and Cl) and compared their properties with CH3NH3PbI3. The DFT results indicate that the phase transformation from tetragonal to cubic phase decreases the band gap. The calculated results show that the X‐site ion plays a vital role in the geometrical stability and electronic levels. An increase in the band gap and a reduction in the lattice constants are more apparent in CH3NH3PbI2X compounds (I > Br > Cl).  相似文献   

15.
The synthesis and characterization of Class II–III mixed valence complexes have been an interesting topic due to their special intermediate behaviour between localized and delocalized mixed valence complexes. To investigate the influence of the isocyanidometal bridge on metal-to-metal charge transfer (MMCT) properties, a family of new isocyanidometal-bridged complexes and their one-electron oxidation products cis-[Cp(dppe)Fe−CN−Ru(L)2-NC−Fe(dppe)Cp][PF6]n (n=2, 3) (Cp=1,3-cyclopentadiene, dppe=1,2-bis(diphenylphosphino)ethane, L=2,2’-bipyridine (bpy, 1[PF6]n ), 5,5’-dimethyl-2,2’-bipyridyl (5,5’-dmbpy, 2[PF6]n ) and 4,4’-dimethyl-2,2’-bipyridyl (4,4’-dmbpy, 3[PF6]n )) have been synthesized and fully characterized. The experimental results suggest that all the one-electron oxidation products may belong to Class II–III mixed valence complexes, supported by TDDFT calculations. With the change of the substituents of the bipyridyl ligand on the Ru centre from H, 5,5’-dimethyl to 4,4’-dimethyl, the energy of MMCT for the one-electron oxidation complexes changes in the order: 13+ < 23+ < 33+ , and that for the two-electron oxidation complexes decreases in the order 14+ > 34+ > 24+ . The potential splitting (ΔE1/2(2)) between the two terminal Fe centres for N[PF6]2 are the largest potential splitting for the cyanido-bridged complexes reported so far. This work shows that the smaller potential difference between the bridging and the terminal metal centres would result in the more delocalized mixed valence complex.  相似文献   

16.
There have been recent reports on the formation of single‐halide perovskites, CH3NH3PbX3 (X=Cl, Br, I), by means of vapor‐assisted solution processing. Herein, the successful formation of mixed‐halide perovskites (CH3NH3PbI3?xXx) by means of a vapor‐assisted solution method at ambient atmosphere is reported. The perovskite films are synthesized by exposing PbI2 film to CH3NH3X (X=I, Br, or Cl) vapor. The prepared perovskite films have uniform surfaces with good coverage, as confirmed by SEM images. The inclusion of chlorine and bromine into the structure leads to a lower temperature and shorter reaction time for optimum perovskite film formation. In the case of CH3NH3PbI3?xClx, the optimum reaction temperature is reduced to 100 °C, and the resulting phases are CH3NH3PbI3 (with trace Cl) and CH3NH3PbCl3 with a ratio of about 2:1. In the case of CH3NH3PbI3?xBrx, single‐phase CH3NH3PbI2Br is formed in a considerably shorter reaction time than that of CH3NH3PbI3. The mesostructured perovskite solar cells based on CH3NH3PbI3 films show the best optimal power conversion efficiency of 13.5 %, whereas for CH3NH3PbI3?xClx and CH3NH3PbI3?xBrx the best recorded efficiencies are 11.6 and 10.5 %, respectively.  相似文献   

17.
A two‐step solution processing approach has been established to grow void‐free perovskite films for low‐cost high‐performance planar heterojunction photovoltaic devices. A high‐temperature thermal annealing treatment was applied to drive the diffusion of CH3NH3I precursor molecules into a compact PbI2 layer to form perovskite films. However, thermal annealing for extended periods led to degraded device performance owing to the defects generated by decomposition of perovskite into PbI2. A controllable layer‐by‐layer spin‐coating method was used to grow “bilayer” CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple air exposure at room temperature for making well‐oriented, highly crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ca. 800 nm and a high device efficiency of 15.6 %, which is comparable to values reported for thermally annealed perovskite films.  相似文献   

18.
《Mendeleev Communications》2021,31(4):469-470
The effect of the annealing of CH3NH3PbI3 perovskite on its electrical, photoelectric and optical properties has been estimated. The annealing leads to a two-phase structure consisting of perovskite and lead iodide, whose relative concentrations depend on the annealing temperature. The formation of a PbI2 phase in a perovskite film upon heating leads to a decrease in the conductivity and photoconductivity of two-phase material, which contradicts the assumption of a decrease in recombination associated with PbI2, obtained by measuring the parameters of a solar cell.  相似文献   

19.
《中国化学快报》2020,31(9):2249-2253
In the past ten years, perovskite solar cells were rapidly developed, but the intrinsic unbalanced charge carrier diffusion lengths within perovskite materials were not fully addressed by either a planar heterojunction or meso-superstructured perovskite solar cells. In this study, we report bulk heterojunction perovskite solar cells, where perovskite materials CH3NH3PbI3 is blended with solution-processed n-type TiOx nanoparticles as the photoactive layer. Studies indicate that one-step solution-processed CH3NH3PbI3:TiOx bulk-heterojunction thin film possesses enhanced and balanced charge carrier mobilities, superior film morphology with enlarged crystal sizes, and suppressed trap-induced charge recombination. Thus, bulk heterojunction perovskite solar cells by CH3NH3PbI3 mixed with 5 wt% of TiOx, which is processed by one-step method rather than typical two-step method, show a short-circuit current density of 20.93 mA/cm2, an open-circuit voltage of 0.90 V, a fill factor of 80% and with a corresponding power conversion efficiency of 14.91%, which is more than 30% enhancement as compared with that of perovskite solar cells with a planar heterojunction device structure. Moreover, bulk heterojunction perovskite solar cells possess enhanced device stability. All these results demonstrate that perovskite solar cells with a bulk heterojunction device structure are one of apparent approaches to boost device performance.  相似文献   

20.
A selection of complexes containing [(CH3)nPX+4−n] cations (XCl, Br) have been investigated by magic-angle spinning (MAS) 31P and 11B NMR spectroscopy. Qualitative information about ionic motion in these systems is derived from the observed linewidths, which are dependent upon the nature of the anions present in the lattices. Isomers of [(CH3)PCl+3Cl] and [(CH3)2PCl+2Cl] are detected, confirming previous Raman spectroscopic observations. The mixed-halogen cations [(CH3)PCl2Br+], [(CH3)PClBr+2] and [(CH3)2PClBr+] are also observed, complexed with both single-halide and polyatomic anions. Differences in NMR linewidths are again noted. These results are compared with Raman studies on the same complexes and contrasted with a similar investigation of the [PClnBr+4−n] (O⩽n⩽4) system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号